Skip to main content
Log in

Thermomagnetoelastic Deformation of Flexible Orthotropic Shells of Revolution of Variable Stiffness with Joule Heat Taken into Account

  • Published:
International Applied Mechanics Aims and scope

The equations of thermomagnetoelasticity for flexible orthotropic shells of revolution are derived taking into account orthotropic electrical conductivity and Joule heat. The thermomagnetoelasticity of a truncated orthotropic conical shell is analyzed using the axisymmetric problem formulation and taking into account the orthotropy of electrical conductivity and Joule heating in comparison with a flexible isotropic shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Ambartsumyan, G. E. Bagdasaryan, and M. V. Belubekyan, Magnetoelasticity of Thin Shells and Plates [in Russian], Nauka, Moscow (1977).

  2. R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier, New York (1965).

  3. V. D. Budak, L. V. Mol’chenko, and A. V. Ovcharenko, Numerical and Analytical Solution of Boundary-Value Problems of Magnetoelasticity [in Russian], Ilion, Nikolaev (2016).

  4. V. D. Budak, L. V. Mol’chenko, and A. V. Ovcharenko, Nonlinear Magnetoelastic Shells [in Russian], Ilion, Nikolaev (2016).

  5. S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk, 16, No. 5, 171–174 (1961).

    MathSciNet  Google Scholar 

  6. Ya. M. Grigorenko and L. V. Mol’chenko, Fundamentals of the Theory of Plates and Shells with Elements of Magnetoelasticity (Textbook) [in Russian], IPTs Kievskii Universitet, Kyiv (2010).

  7. V. I. Dresvyannikov, “Nonstationary problems of the mechanics of elastoplastic conductive bodies subject to strong impulsive magnetic fields,” Prikl. Probl. Prochn. Plast., 19, 32–47 (1979).

    Google Scholar 

  8. A. Sommerfeld, Electrodynamics, Academic Press, New York (1964).

    Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford (1984).

    Google Scholar 

  10. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford (1957).

    MATH  Google Scholar 

  11. Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystal Physics [in Russian], Nauka, Moscow (1979).

  12. D. A. Stratton, Theory of Electromagnetism [in Russian], GTTI, Moscow, Leningrad (1948).

  13. I. E. Tamm, Fundamentals of the Theory of Electricity, Mir, Moscow (1979).

  14. L. A. Shapovalov, “On simple equations of the geometrically nonlinear theory of thin shells,” Inzh. Zh. Mekh. Tverd. Tela, No. 1, 56–62 (1968).

  15. Y. H. Bian, “Analysis of nonlinear stresses and strains in a thin current-carrying elastic plate,” Int. Appl. Mech., 51, No. 1, 108–120 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Elhajjar, V. La Saponara, and A. Muliana, Smart Composites. Mechanics and Design, CRS Press, New York (2013).

    Book  Google Scholar 

  17. K. Hutter, A. A. F. Van de Ven, and A. Ursescu, Electromagnetic Field Matter Interactions in Thermoelastic Solids and Viscous Fluids, Springer, Berlin (2007).

    Google Scholar 

  18. L. V. Mol’chenko and I. I. Loos, “Effect of conicity on axisymmetrical strain state of flexible orthotropic shell of revolution in magnetic field,” Int. Appl. Mech., 46, No. 11, 1261–1267 (2010).

    Article  Google Scholar 

  19. L. V. Mol’chenko, L. N. Fedorchenko, and L. Ya. Vasilieva, “Nonlinear theory of magnetoelasticity of shells of revolution with Joule heat taken into account,” Int. Appl. Mech., 54, No. 3, 306–314 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  20. F. C. Moon, Magneto-Solid Mechanics, John Wiley and Sons Inc., New York (1984).

    Google Scholar 

  21. N. M. Newmark, “A method of computation for structural dynamics,” J. Eng. Mech. Div. Proc. ASCE, 85, No. 7, 67–97 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Mol’chenko.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 56, No. 4, pp. 117–132, July–August 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mol’chenko, L.V., Loos, I.I. & Darmosyuk, V.N. Thermomagnetoelastic Deformation of Flexible Orthotropic Shells of Revolution of Variable Stiffness with Joule Heat Taken into Account. Int Appl Mech 56, 498–511 (2020). https://doi.org/10.1007/s10778-020-01032-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-020-01032-8

Keywords

Navigation