Mechanism of Development of the Area of Passive Deformation in a Nonlinear Elastic Orthotropic Body with a Crack

Anonlinear thin-walled elastic orthotropic body with a mode 1 crack and a fracture process zone near its tip is considered. An equilibrium boundary-value problem is stated in terms of the components of the displacement vector. The equations relating the components of the stress vectors at points on the opposite boundaries of the fracture process zone with the components of the vector of displacement of these points relative to each other are used. The mechanism of development of the area of passive deformation around the fracture process zone is established using the solution of the boundary-value problem. The strain state at some points of the area of passive deformation is analyzed. The evolution of the area of passive deformation under loading of the body is studied. The area of passive deformation is compared with the nonlinear zone near the crack tip.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    O. S. Bogdanova, A. A. Kaminsky, and E. E. Kurchakov, “On the fracture process zone near the front of an arbitrary crack in a solid,” Dop. NAN Ukrainy, No. 5, 25–33 (2017).

  2. 2.

    A. A. Il’yushin, Plasticity [in Russian], OGIZ, Moscow–Leningrad (1948).

  3. 3.

    A. A. Kaminsky and E. E. Kurchakov, “Evolution of the fracture process zone near a crack tip in a nonlinear anisotropic body,” Dop. NAN Ukrainy, No. 10, 44–55 (2018).

  4. 4.

    E. E. Kurchakov, “Thermodynamic justification of the constitutive equations for a nonlinear anisotropic body,” Dop. NAN Ukrainy, No. 9, 46–53 (2015).

  5. 5.

    H. Hencky, “Development and present status of the theory of plasticity,” Prikl. Mat. Mekh., 4, No. 3, 31–36 (1940).

    MATH  Google Scholar 

  6. 6.

    R. Glausius, “Uber eine veranderte form des zweiten hauptsatzes der mechanischen warmetheorie,” Annalen der Physik und Chemie, 93, No. 12, 481–506 (1854).

    Article  Google Scholar 

  7. 7.

    H. Helmholtz, “Uber die erhaltung der kraft,” Wissenschaftliche Abhandlungen, halting, 1, No. 1, 12–75 (1847).

    Google Scholar 

  8. 8.

    H. Hencky, “Zur theorie pastische deformationen,” in: Proc. 1th Int. Congr. Appl. Mech., Delft (1924), pp. 312–317.

  9. 9.

    A. A. Kaminsky and E. E. Kurchakov, “Influence of tension along a mode 1 crack in an elastic body on the formation of a nonlinear zone,” Int. Appl. Mech., 51, No. 2, 130–148 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    A. A. Kaminsky and E. E. Kurchakov, “Fracture process zone at the tip of a mode 1 crack in a nonlinear elastic orthotropic material,” Int. Appl. Mech., 55, No. 1, 23–40 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    A. A. Kaminsky, E. E. Kurchakov, and G. V. Gavrilov, “Study of the plastic zone near a crack in an anisotropic body,” Int. Appl. Mech., 42, No. 7, 749–764 (2006).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    E. E. Kurchakov, “Experimental study of the plastic zone at the front of a mode 1 crack,” Int. Appl. Mech., 54, No. 2, 213–219 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    E. E. Kurchakov, “Stress–strain relation for nonlinear anisotropic medium,” Sov. Appl. Mech., 15, No. 9, 803–807 (1979).

    ADS  Article  Google Scholar 

  14. 14.

    A. A. Lebedev, B. I. Koval’chuk, F. F. Giginjak, and V. P. Lamashevsky, Handbook on Mechanical Properties of Structural Materials at a Complex Stress State, Begell House Inc., New York (2001).

  15. 15.

    A. Love, Treatise on the Mathematical Theory of Elasticity, Univ. Press, Cambridge (1927).

  16. 16.

    A. Nadai, Plasticity, McGraw-Hill Book Company, New York–London (1931).

  17. 17.

    M. F. Selivanov and Y. O. Chornoivan, “A semi-analytical solution method for problems of cohesive fracture and some of its applications,” Int. J. Fract., 212, No. 1, 113–121 (2018).

    Article  Google Scholar 

  18. 18.

    M. F. Selivanov, Y. O. Chornoivan, and O. P. Kononchuk, “Determination of crack opening displacement and critical load parameter within a cohesive zone model,” Cont. Mech. Thermodynam., 31, No. 2, 569–586 (2019).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Kaminsky.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 56, No. 4, pp. 15–26, July–August 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaminsky, A.A., Kurchakov, E.E. Mechanism of Development of the Area of Passive Deformation in a Nonlinear Elastic Orthotropic Body with a Crack. Int Appl Mech 56, 402–414 (2020). https://doi.org/10.1007/s10778-020-01024-8

Download citation

Keywords

  • nonlinear elastic orthotropic body
  • mode 1 crack
  • fracture process zone
  • passive deformation area