Skip to main content
Log in

Brachistochronic Motion of a Material Point on a Transcendental Surface

  • Published:
International Applied Mechanics Aims and scope

A new brachistochrone problem of the motion of a material point on a transcendental surface between two given points in a vertical uniform field of gravity is considered. The surface is a cut horizontal cylinder whose directrix is a cycloid, and generatrix is straight lines parallel to the horizontal axis. Energy dissipation is neglected. A time functional is obtained and a differential equation is derived for a single parameter that describes the form of brachistochrons in the problem. Spatial parametric equations of the brachistochronic motion of a material point on a surface are obtained. The fast response time is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Aravind, “Simplified approach to brachistochrone problem,” American J. Phys., 49, No. 9, 884–886 (1981).

    Article  ADS  Google Scholar 

  2. N. Ashby, W. E. Britting, W. F. Love, and W. Wyss, “Brachistochrone with Coulomb friction,” American J. Phys., 43, No. 10, 902–906 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  3. V. Covic, and M. Veskovic, “Brachistochrone on a surface with Coulomb friction,” Int. J. Non-Lin. Mech., 43, 437–450 (2008).

    Article  Google Scholar 

  4. H. H Denman, “Remarks on brachistochrone-tautochrone problem,” American J. Phys., 53, No. 3, 224–227 (1985).

    Article  ADS  Google Scholar 

  5. W. Dunham, Journey Through Genius, Penguin Books, New York (1991).

    MATH  Google Scholar 

  6. L. P. Eltsgolts, Differential Equations and Variational Calculus [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  7. H. Erlichson, “Johann Bernoulli’s brachistochrone solution using Fermat’s principle of least time,” European J. Phys., 20, 299–304 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  8. I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall, Inc., New York (1963).

    MATH  Google Scholar 

  9. J. Gemmer, R. Umble, and M. Nolan, “Generalizations of the brachistochrone problem,” Pi Mu Epsilon J., 13, No. 4, 207–218 (2011).

    Google Scholar 

  10. H. F. Goldstein and C. M. Bender, “Relativistic brachistochrone,” J. Math. Phys., 27, No. 2, 507–511 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. C. Hayen, “Brachistochrone with Coulomb friction,” Int. J. of Non-Linear Mechanics, 40, No. 8, 1057–1075 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  12. V. P. Legeza, “Quickest-descent curve in the problem of rolling of a homogeneous cylinder,” Int. Appl. Mech., 44, No. 12, 1430–1436 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. P. Legeza, “Brachistochrone for a rolling cylinder,” Mechanics of Solids, 45, No. 1, 27–33 (2010).

    Article  ADS  Google Scholar 

  14. V. P. Legeza, “Cycloidal pendulum with a rolling cylinder,” Mechanics of Solids, 47, No. 4, 380–384 (2012).

    Article  ADS  Google Scholar 

  15. S. Lipp, “Brachistochrone with Coulomb friction,” SIAM J. Control Optim., 35, No. 2, 562–584 (1997).

    Article  MathSciNet  Google Scholar 

  16. S. Mertens and S. Mingramm, “Brachistochrones with loose ends,” European J. of Physic, 29, 1191–1199 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Obradovic, S. Salinic, and R. Radulovic, “The brachistochronic motion of a vertical disk rolling on a horizontal plane without slip,” Theor. Appl. Mech., 44, No. 2, 237–254 (2017).

    Article  ADS  Google Scholar 

  18. D. Palmieri, The Brachistochrone Problem, a New Twist to an Old Problem, Undergraduate Honors Thesis. Millersville University (1996).

    Google Scholar 

  19. A. S. Parnovsky, “Some generalisations of the brachistochrone problem,” Acta Physica Polonica, Ser. A: General Physics, 93, No. 145, 5–55 (1998).

    Google Scholar 

  20. E. Rodgers, “Brachistochrone and tautochrone curves for rolling bodies,” American J. Phys., 14, 249–252 (1946).

    Article  ADS  Google Scholar 

  21. G. M. Scarpello and D. Ritelli, “Relativistic brachistochrone under electric or gravitational uniform field,” ZAMM., 86, No. 9, 736–743 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  22. Srikanth Sarma Gurram, Sharan Raja, Pallab Sinha Mahapatra, and Mahesh V. Panchagnula, “On the brachistochrone of a fluid-filled cylinder,” J. Fluid Mech., 865, 775–789 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  23. G. Tee, “Isochrones and brachistochrones,” Neural, Parallel Sci. Comput., 7, 311–342 (1999).

    MathSciNet  MATH  Google Scholar 

  24. A. M. A. Van der Heijden and J. D. Diepstraten, “On the brachistochrone with dry friction,” Int. J. Non-Lin. Mech., 10, 97–112 (1975).

    Article  Google Scholar 

  25. G. Venezian, “Terrestrial brachistochrone,” American J. Phys., 34, No. 8, 701 (1966).

    Article  ADS  Google Scholar 

  26. B. Vratanar and M. Saje, “On analytical solution of the brachistochrone problem in a non-conservative field,” Int. J. Non-Lin. Mech., 33, No. 3, 437–450 (1998).

    Article  MathSciNet  Google Scholar 

  27. H. A. Yamani and A. A. Mulhem, “A cylindrical variation on the brachistochrone problem,” American J. Phys., 56, No. 5, 467–469 (1988). 366

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Legeza.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 56, No. 3, pp. 112–1213, May–June 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legeza, V.P. Brachistochronic Motion of a Material Point on a Transcendental Surface. Int Appl Mech 56, 358–366 (2020). https://doi.org/10.1007/s10778-020-01019-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-020-01019-5

Keywords

Navigation