Skip to main content
Log in

Determining the Parameters of the Hereditary Kernels of Isotropic Nonlinear Viscoelastic Materials in Combined Stress State*

  • Published:
International Applied Mechanics Aims and scope

The relations between the heredity kernels of isotropic nonlinear viscoelastic materials in combined and one-dimensional stress states are derived. The constitutive equations are presented in a form corresponding to the proportional deviator hypothesis. The nonlinearity of viscoelastic properties is described by Rabotnov’s type models. The creep strains and stress relaxation in thin-walled tubular elements subject to a combination of tension and torsion are determined and tested experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Bugakov, Creep of Polymeric Materials. Theory and Application [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  2. I. I. Gol’denblat., V. L. Bazhanov, and V. A. Kopnov, Long-Term Strength in Mechanical Engineering [in Russian], Mashinostroenie, Moscow (1977).

  3. A. A. Koltunov, “Method of determining the volume and shear characteristics of elastico-viscous hereditary media from uniaxial-tension (compression) experiments,” Mech. Polym., 5, No. 4, 667–671 (1969).

    Article  Google Scholar 

  4. M. A. Koltunov, Creep and Relaxation [in Russian], Vysshaya Shkola, Moscow (1976).

    Google Scholar 

  5. A. F. Kregers and M. R. Kilevits, “Detailed examination of high-density polyethylene in the conditions of nonlinear creep and stress relaxation,” Mech. Comp. Mater., 21, No. 2, 117–123 (1985).

    Article  Google Scholar 

  6. M. N. Stepnov, Statistical Processing of Mechanical Test Data [in Russian], Mashinostroenie, Moscow (1972).

    Google Scholar 

  7. G. M. Fichtenholz, A Course in Differential and Integral Calculus [in Russian], Vol. 2, Nauka, Moscow (1960).

    Google Scholar 

  8. R. M. Christensen, Theory of Viscoelasticity. An Introduction, Academic Press Inc., New-York (1971).

    Google Scholar 

  9. J. D. Ferry, Viscoelastic Properties of Polymers. 2nd ed., John Willey and Sons, New-York (1971).

    Google Scholar 

  10. W. N. Findley, J. S. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, North-Holland Publishing Company, Amsterdam (1976).

    MATH  Google Scholar 

  11. V. P. Golub, “Application of fractional exponential hereditary kernels in the nonlinear theory of viscoelasticity,” Int. Appl. Mech., 47, No. 6, 727–734 (2011).

    Article  ADS  Google Scholar 

  12. V. P. Golub, P. V. Fernati, and Ya. G. Lyashenko, “Determining the parameters of the fractional exponential hereditary kernels of linear viscoelastic materials,” Int. Appl. Mech., 44, No. 9, 963–974 (2008).

    Article  ADS  Google Scholar 

  13. V. P. Golub, Yu. M. Kobzar’, and V. S. Ragulina, “A method for determining the parameters of the hereditary kernels in the nonlinear theory of viscoelasticity,” Int. Appl. Mech., 47, No. 3, 290–301 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  14. V. P. Golub, Ya. V. Pavlyuk, and P. V. Fernati, “Determining parameters of fractional-exponential heredity kernels of nonlinear viscoelastic materials,” Int. Appl. Mech., 53, No. 4, 419–433 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. P. Golub, A. D. Pogrebnyak, and I. B. Romanenko, “Application of smoothing spline approximations in problems on identifications of creep parameters,” Int. Appl. Mech., 33, No. 6, 477–484 (1997).

    Article  ADS  Google Scholar 

  16. Y. M. Kobzar’, “Models of long-term brittle fracture of rods in tension and compression under creep conditions,” Int. Appl. Mech., 53, No. 4, 444–453 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. S. Y. Lai and W. N. Findley, “Behavior of nonlinear viscoelastic material under simultaneous stress relaxation in tension and creep in torsion,” ASME J. Appl. Mech., No. 36, 22–37 (1969).

    Article  ADS  Google Scholar 

  18. H. Leaderman, Elastic and Creep Properties of Filaments Materials and Other High Polymers, Textile Foundation, Washington (1943).

    Google Scholar 

  19. B. P. Maslov, “Combined numerical and analytical determination of Poisson’s ratio for viscoelastic isotropic materials,” Int. Appl. Mech., 54, No. 2, 220–230 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  20. B. Persoz, “Le principle de superposition de Boltzman,” Cahier Groupe Frans, Ĕtudes Rhĕol, 2, No. 1, 237–245 (1957).

    Google Scholar 

  21. Y. N. Rabotnov, Creep Problems in Structural Members, North-Holland Publishing Company, Amsterdam (1969).

    MATH  Google Scholar 

  22. R. O. Stafford, “On mathematical forms for the material functions in nonlinear viscoelasticity,” J. Mech. and Phys. Solids, 17, No. 5, 339–354 (1969).

    Article  ADS  Google Scholar 

  23. I. M. Ward, Mechanical Properties of Solid Polymers, Willey and Sons, New York (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Golub.

Additional information

* This study was sponsored by the budget program “Support for Priority Areas of Scientific Research” (KPKVK 6541230).

Translated from Prikladnaya Mekhanika, Vol. 55, No. 6, pp. 25–45, November–December 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golub, V.P., Kobzar’, Y.M. & Fernati, P.V. Determining the Parameters of the Hereditary Kernels of Isotropic Nonlinear Viscoelastic Materials in Combined Stress State*. Int Appl Mech 55, 601–619 (2019). https://doi.org/10.1007/s10778-019-00982-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-019-00982-y

Keywords

Navigation