Skip to main content
Log in

Influence of Prestresses on Normal Waves in an Elastic Compressible Half-Space Interacting with a Layer of a Compressible Ideal Fluid

  • Published:
International Applied Mechanics Aims and scope

The propagation of quasi-Lamb waves in a prestrained compressible elastic half-space that interacts with a layer of a compressible ideal fluid is studied using the three-dimensional linearized equations of the theory of finite deformations for the compressible elastic half-space and the three-dimensional linearized Euler equations for the compressible ideal fluid. A problem statement and an approach based on the general solutions of the linearized equations for elastic solid and fluid are used. The dispersion equations that describe the propagation of quasi-Lamb waves in hydroelastic systems over a wide frequency range are obtained. The effect of initial stresses and the thicknesses of the layer of compressible ideal fluid and the elastic half-space on the phase velocities of quasi-Lamb modes is analyzed. A criterion of existence of the quasi-Lamb waves in hydroelastic waveguides is proposed. The developed approach and the obtained results make it possible to establish the limits of applicability of the models of wave processes based on different versions of the theory of small initial deformations. The numerical results are presented in the form of graphs and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Viktorov, Surface Acoustic Waves in Solids [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  2. M. M. Vol’kenshtein and V. M. Levin, “Structure of a Stoneley wave at the interface between a viscous fluid and a solid,” Akust. Zh., 34, No. 4, 608–615 (1988).

    Google Scholar 

  3. A. N. Guz, General Issues, Vol. 1 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

    Google Scholar 

  4. A. N. Guz, Propagation Laws, Vol. 2 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

    Google Scholar 

  5. A. N. Guz, Dynamics of Compressible Viscous Fluid [in Russian], A.S.K., Kyiv (1998).

    Google Scholar 

  6. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

    Google Scholar 

  7. A. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses, Part 1: General Principles. Waves in Unbounded Bodies and Surface Waves [in Russian], LAP LAMBERT Academic Publishing, Saarbrucken (2016).

    Google Scholar 

  8. A. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses, Part 2: Waves in Partially Bounded Bodies [in Russian], LAP LAMBERT Academic Publishing, Saarbrucken (2016).

    Google Scholar 

  9. A. N. Guz, An Introduction to the Dynamics of Compressible Viscous Fluid [in Russian], LAP LAMBERT Academic Publishing RU, Saarbrucken (2017).

    Google Scholar 

  10. A. N. Guz, A. P. Zhuk, and F. G. Makhort, Waves in a Prestressed Layer [in Russian], Naukova Dumka, Kyiv (1976).

    Google Scholar 

  11. A. P. Zhuk, “Stoneley waves in a prestressed medium,” Prikl. Mekh., 16, No. 1, 113–116 (1980).

    MathSciNet  Google Scholar 

  12. S. Yu. Babich, A. N. Guz, and A. P. Zhuk, “Elastic waves in bodies with initial stresses,” Int. Appl. Mech., 15, No. 4, 277–291 (1979).

    ADS  MathSciNet  MATH  Google Scholar 

  13. A. M. Bagno, “Effect of prestresses on the dispersion of quasi-Lamb waves in the system consisting of an ideal liquid layer and a compressible elastic layer,” Int. Appl. Mech., 53, No. 2, 139–148 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. M. Bagno, “Dispersion properties of Lamb waves in an elastic layer–ideal liquid half-space system,” Int. Appl. Mech., 53, No. 6, 609–616 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. M. Bagno and A. N. Guz, “Elastic waves in pre-stressed bodies interacting with a fluid (survey),” Int. Appl. Mech., 33, No. 6, 435–463 (1997).

    Article  ADS  Google Scholar 

  16. B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT & E Int., 39, No. 7, 525–541 (2006).

    Article  Google Scholar 

  17. A. Gibson and J. Popovics, “Lamb wave basis for impact-echo method analysis,” J. Eng. Mech., 131, No. 4, 438–443 (2005).

    Article  Google Scholar 

  18. A. N. Guz, “Aerohydroelasticity problems for bodies with initial stresses,” Int. Appl. Mech., 16, No. 3, 175–190 (1980).

    ADS  MathSciNet  MATH  Google Scholar 

  19. A. N. Guz, “Elastic waves in bodies with initial (residual) stresses,” Int. Appl. Mech., 38, No. 1, 23–59 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. N. Guz, Dynamics of Compressible Viscous Fluid, Cambridge Scientific Publ., Cambridge (2009).

    MATH  Google Scholar 

  21. A. N. Guz, “On the foundations of the ultrasonic non-destructive determination of stresses in near-the-surface layers of materials. Review,” J. Phys. Sci. Appl., 1, No. 1, 1–15 (2011).

    Google Scholar 

  22. A. N. Guz, “Ultrasonic nondestructive method for stress analysis of structural members and near-surface layers of materials: Focus on Ukrainian research (review),” Int. Appl. Mech., 50, No. 3, 231–252 (2014).

    Article  ADS  Google Scholar 

  23. A. N. Guz and A. M. Bagno, “Effect of prestresses on Lamb waves in a system consisting of an ideal liquid half-space and an elastic layer,” Int. Appl. Mech., 54, No. 5, 495–505 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. N. Guz, A. P. Zhuk, and A. M. Bagno, “Dynamics of elastic bodies, solid particles, and fluid parcels in a compressible viscous fluid (review),” Int. Appl. Mech., 52, No. 5, 449–507 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  25. K. Y. Jhang, “Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review,” Int. J. Precis. Eng. Manufact., 10, No. 1, 123–135 (2009).

    Article  Google Scholar 

  26. S. S. Kessler, S. M. Spearing, and C. Soutis, “Damage detection in composite materials using Lamb wave methods,” Smart Mater. Struct., 11, No. 2, 269–279 (2002).

    Article  ADS  Google Scholar 

  27. M. Kobayashi, S. Tang, S. Miura, K. Iwabuchi, S. Oomori, and H. Fujiki, “Ultrasonic nondestructive material evaluation method and study on texture and cross slip effects under simple and pure shear states,” Int. J. Plasticity, 19, No. 6, 771–804 (2003).

    Article  Google Scholar 

  28. K. R. Leonard, E. V. Malyarenko, and M. K. Hinders, “Ultrasonic Lamb wave tomography,” Inverse Problems, 18, No. 6, 1795–1808 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  29. L. Liu and Y. Ju, “A high-efficiency nondestructive method for remote detection and quantitative evaluation of pipe wall thinning using microwaves,” NDT & E Int., 44, No. 1, 106–110 (2011).

    Article  Google Scholar 

  30. M. Ottenio, M. Destrade, and R. W. Ogden, “Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid,” Int. J. Non-Lin. Mech., 42, No. 2, 310–320 (2007).

    Article  Google Scholar 

  31. C. Ramadas, K. Balasubramaniam, M. Joshi, and C. V. Krishnamurthy, “Interaction of the primary anti-symmetric Lamb mode (A 0) with symmetric delaminations: numerical and experimental studies,” Smart Mater. Struct., 18, No. 8, 1–7 (2009).

    Article  Google Scholar 

  32. N. S. Rossini, M. Dassisti, K. Y. Benyounis, and A. G. Olabi, “Methods of measuring residual stresses in components,” Materials & Design, 35, 572–588 (2012).

    Article  Google Scholar 

  33. M. Spies, “Analytical methods for modeling of ultrasonic nondestructive testing of anisotropic media,” Ultrasonics, 42, No. 1–9, 213–219 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bagno.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 55, No. 6, pp. 3–19, November–December 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guz, A.N., Bagno, A.M. Influence of Prestresses on Normal Waves in an Elastic Compressible Half-Space Interacting with a Layer of a Compressible Ideal Fluid. Int Appl Mech 55, 585–595 (2019). https://doi.org/10.1007/s10778-019-00980-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-019-00980-0

Keywords

Navigation