Skip to main content
Log in

Nonclassical Problems of Fracture/Failure Mechanics: On the Occasion of the 50th Anniversary of Research (Review). III

International Applied Mechanics Aims and scope

The main results of research on some nonclassical problems of fracture/failure mechanics are analyzed. These results have been obtained by the author and his followers at the Department of Dynamics and Stability of Continua of the S. P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine (the NAS of Ukraine) during the last 50 years. The nonclassical problems of fracture/failure mechanics are problems to which the approaches and criteria of classical fracture mechanics are not applicable. A distinguishing feature of the results obtained by the author and his followers is application of three-dimensional theories of stability, dynamics, and statics of solid mechanics to study the nonclassical problems of fracture/failure mechanics. The majority of other researchers have been using various approximate theories of shells, plates, and rods as well as other approaches to studying the nonclassical problems of fracture/failure mechanics. The main scientific results of solving the eight nonclassical problems of fracture\failure mechanics obtained in the framework of the above mentioned approach (three-dimensional theories of solid mechanics) have been presented very briefly, with focus on the statement of problems, the analysis of corresponding experiments, the development of methods for their solution within the framework of approach under consideration, and the discussion of final results. The mathematical aspects of the methods for solving the mentioned problems and their computer-aided implementation have not been discussed in this review, with information on this subject briefly presented as annotation. The following eight nonclassical problems of fracture\failure mechanics (results by the author and his followers) are considered in this review:

– first problem is fracture of composites compressed along the reinforcement;

– second problem is short-fiber model in stability and fracture of composites under compression;

– third problem is end-crush fracture of composites under compression along the reinforcement;

– fourth problem is brittle fracture of cracked materials with initial (residual) stresses acting along the cracks;

– fifth problem is shredding fracture of composites stretched or compressed along the reinforcement;

– sixth problem is fracture of materials under compression along parallel cracks;

– seventh problem is brittle fracture of cracked materials under dynamic loads (with contact interaction of the crack faces);

– eighth problem is fracture of thin-walled cracked bodies under tension with prebuckling.

About 523 monographs and papers published by the author and his followers on the eight nonclassical problems of fracture mechanics have been included in the references to this review.

This review consists of three parts. The first part is General Problems; it is published in Prikladnaya Mekhanika (55, No. 2, 2019). The second part is Compressive Failure of Composite Materials; it is published in Prikladnaya Mekhanika (55, No. 3, 2019). The third part is Other Nonclassical Problems of Fracture/Failure Mechanics; it is published in Prikladnaya Mekhanika (55, No. 4, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S. D. Akbarov, “Effect of rheologic parameters of the matrix material on the distribution of self-balanced stresses in a multilayer composite with curved structures,” Mech. Comp. Mater., 22, No. 4, 421–427 (1987).

    Google Scholar 

  2. S. D. Akbarov, “Revisiting the mechanics of composites with local curvings in structure,” Prikl. Mekh., 23, No. 1, 119–122 (1987).

    Google Scholar 

  3. S. D. Akbarov, “Distribution of self-balanced stresses in a multilayer composite with curved structure,” Mat. Met. Fiz.-Mekh. Polya, No. 26, 83–89 (1987).

  4. S. D. Akbarov and A. N. Guz, “Stressed state in a composite material with curved layers having a low filler concentration,” Mech. Comp. Mater., 20, No. 6, 688–993 (1984).

    Google Scholar 

  5. S. D. Akbarov and A. N. Guz, ”Revisiting the mechanics of composites with curved structure,” DAN SSSR, 281, No. 1, 37–41 (1985).

    Google Scholar 

  6. S. D. Akbarov and A. N. Guz, “On some effect in the fracture mechanics of composites,” DAN SSSR, 290, No. 1, 23–26 (1986).

    Google Scholar 

  7. S. D. Akbarov and A. N. Guz, “Stress distribution in multilayered composite material with curved structures (model of a piecewise homogeneous body),” Mech. Comp. Mater., 23, No. 4, 396–403 (1988).

    Google Scholar 

  8. I. Yu. Babich, “Unstable small-strain deformation of composites,” Dokl. AN USSR, Ser. A, No. 10, 909–913 (1973).

  9. I. Yu. Babich and A. N. Guz, “Applicability of the Euler approach to the stability analysis of the deformation of anisotropic nonlinear elastic bodies at finite subcritical strains,” DAN SSSR, 202, No. 4, 795–796 (1972).

    Google Scholar 

  10. I. Yu. Babich and A. N. Guz, “Theory of the elastic stability of compressible and incompressible composite media,” Polym. Mech., 8, No. 2, 237–244 (1972).

    ADS  Google Scholar 

  11. I. Yu. Babich and A. N. Guz, “Three-dimensional problem of the stability of a fiber in a matrix subject to hyperelastic deformation,” Izv. AN SSSR, No. 3, 44–48 (1973).

  12. V. L. Bogdanov, “Nonaxisymmetric problem of the fracture of a half-space compressed along a near-surface penny-shaped crack,” Dokl. AN USSR, Ser. B, No. 5, 42–47 (1991).

  13. V. L. Bogdanov, “Axisymmetric problem for a near-surface mode I crack in a composite material withy residual stresses,” Mat. Met. Fiz.-Mekh. Polya, 50, No. 2, 45–54 (2007).

    MATH  Google Scholar 

  14. V. L. Bogdanov, “Nonaxisymmetric problem for a periodic array of penny-shaped mode I cracks in a prestressed body,” Mat. Met. Fiz.-Mekh. Polya, 50, No. 4, 149–159 (2007).

    MATH  Google Scholar 

  15. V. L. Bogdanov, “Torsion of a prestressed material with two parallel coaxial cracks,” Dop. NAN Ukrainy, No. 11, 59–66 (2008).

  16. V. L. Bogdanov, “Nonaxisymmetric problem for two parallel coaxial mode I cracks in a prestressed material,” Dop. NAN Ukrainy, No. 8, 49–59 (2010).

  17. V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, Unified Approach to Nonclassical Problems of Fracture Mechanics [in Russian], Lambert Academic Publishing, Saarbrücken/Deutschland (2017).

  18. V. L. Bogdanov and V. M. Nazarenko, “Compression of a composite material along a macrocrack near the surface,” Mech. Comp. Mater., 30, No. 3, 251–255 (1994).

    Google Scholar 

  19. L. A. Galin, Contact Problems of Elasticity [in Russian], Fizmatgiz, Moscow (1953).

    Google Scholar 

  20. I. N. Garashchuk, “Stability of a fiber in a matrix subject to inhomogeneous subcritical deformation,” Dokl. AN USSR, Ser. A, No. 8, 24–27 (1983).

  21. A. Ya. Gol’dman, N. F. Savel’eva, and V. I. Smirnov, “Mechanical properties of glass fabric-reinforced plastics in tension and compression normal to the plane of reinforcement,” Mech. Comp. Mater., 4, No. 4, 643–648 (1968).

    Google Scholar 

  22. A. N. Guz, “On the accuracy of Kirchhoff–Love hypothesis in determining the critical forces in the theory of elastic stability,” DAN SSSR, 179, No. 3, 552–554 (1968).

    Google Scholar 

  23. A. N. Guz, “On the stability of three-dimensional elastic bodies,” J. Appl. Math. Mech., 32, No. 5, 950–955 (1968).

    MATH  Google Scholar 

  24. A. N. Guz, “On the stability of a strip,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 6, 111–113 (1969).

  25. A. N. Guz, “On setting up a stability theory of unidirectional fibrous materials,” Int. Appl. Mech., 5, No. 2, 156–162 (1969).

    ADS  Google Scholar 

  26. O. M. Guz, “Determining the theoretical ultimate compressive strength of reinforced materials,” Dop. AN URSR, Ser. A, No. 3, 236–238 (1969).

  27. A. N. Guz, “The application condition for the Euler method of stability analysis of the deformation of nonlinear elastic bodies at finite subcritical strains,” DAN SSSR, 194, No. 3, 38–40 (1970).

    Google Scholar 

  28. A. N. Guz, “The three-dimensional theory of stability of deformation of materials with rheological properties,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 6, 104–107 (1970).

  29. A. N. Guz, “Constructing a theory for the strength of unidirectionally reinforced materials in compression,” Strength of Materials, 3, No. 3, 278–280 (1971).

    Google Scholar 

  30. A. N. Guz, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kyiv (1971).

    Google Scholar 

  31. À. N. Guz, Stability of Elastic Bodies Subject to Finite Deformations [in Russian], Naukova Dumka, Kyiv (1973).

    Google Scholar 

  32. À. N. Guz, “Analogies between linearized and linear problems of elasticity,” Dokl. AN SSSR, 212, No. 5, 1089–1091 (1973).

    Google Scholar 

  33. O. M. Guz, “Variational principles of three-dimensional problems of the stability of incompressible bodies,” Dop. AN URSR, Ser. A, No. 11, 1008–1012 (1973).

  34. A. N. Guz, Fundamentals of the Theory of Stability of Mine Workings [in Russian], Naukova Dumka, Kyiv (1977).

    Google Scholar 

  35. À. N. Guz, Stability of Elastic Bodies under Triaxial Compression [in Russian], Naukova Dumka, Kyiv (1979).

    Google Scholar 

  36. A. N. Guz, “Variational principles in the three-dimensional theory of stability of deformable bodies under follower loads,” DAN SSSR, 246, No. 6, 1314–1316 (1979).

    Google Scholar 

  37. À. N. Guz, “Linearized theory of fracture of prestressed brittle materials,” Dokl. AN SSSR, 252, No. 5, 1085–1088 (1980).

    Google Scholar 

  38. À. N. Guz, “Tensile cracks in elastic bodies with prestresses,” Dokl. AN SSSR, 254, No. 3, 571–574 (1980).

    MathSciNet  Google Scholar 

  39. À. N. Guz, “A failure criterion for solids compressed along cracks: Plane problem,” Dokl. AN SSSR, 259, No. 6, 1315–1318 (1981).

    Google Scholar 

  40. À. N. Guz, “A failure criterion for solids compressed along cracks: Three-dimensional problem,” Dokl. AN SSSR, 261, No. 1, 42–45 (1981).

    Google Scholar 

  41. A. N. Guz, “Brittle fracture criterion for prestressed materials,” DAN SSSR, 262, No. 2, 285–288 (1982).

    Google Scholar 

  42. A. N. Guz, “Continuum theory of the fracture of a compressed composite with an elastoplastic matrix,” DAN SSSR, 262, No. 3, 556–560 (1982).

    Google Scholar 

  43. A. N. Guz, “Failure of unidirectional composite materials under axial compression,” Mech. Comp. Mater., 18, No. 3, 282–288 (1982).

    Google Scholar 

  44. A. N. Guz, Brittle Fracture Mechanics of Prestressed Materials [in Russian], Naukova Dumka, Kyiv (1983).

    Google Scholar 

  45. A. N. Guz, “Continuum theory of composites with small-scale curvature in structure,” DAN SSSR, 268, No. 2, 307–313 (1983).

    Google Scholar 

  46. A. N. Guz, “Theory of vibrations of composites with small-scale curvature in structure,” DAN SSSR, 270, No. 4, 824–827 (1983).

    Google Scholar 

  47. A. N. Guz, “A brittle-fracture criterion for materials with defects under compression,” DAN SSSR, 285, No. 4, 828–831 (1985).

    Google Scholar 

  48. A. N. Guz, “The order of singularity at the crack tip in prestressed materials,” Dokl. AN SSSR, 289, No. 2, 310–313 (1986).

    Google Scholar 

  49. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kyiv (1986).

    Google Scholar 

  50. A. N. Guz, “Continuum theory of the fracture of composites under biaxial compression,” DAN SSSR, 293, No. 4, 805–809 (1987).

    Google Scholar 

  51. A. N. Guz, “Continuum theory of the end-crushing fracture of composites,” DAN SSSR, 298, No. 3, 565–570 (1988).

    Google Scholar 

  52. A. N. Guz, “Exact solution to the plane problem of the fracture of a material compressed along cracks located in a plane,” Dokl. AN SSSR, 310, No. 3, 563–566 (1990).

    Google Scholar 

  53. A. N. Guz, “Local stability of fibrous composites,” DAN SSSR, 314, No. 4, 806–809 (1990).

    Google Scholar 

  54. À. N. Guz, Fracture Mechanics of Compressed Composite Materials [in Russian], Naukova Dumka, Kyiv (1990).

    Google Scholar 

  55. A. N. Guz, “Nonclassical problems of fracture mechanics,” Fiz.-Khim. Mekh. Mater., 29, No. 3, 86–97 (1993).

    Google Scholar 

  56. A. N. Guz, “Moving cracks in composite materials with initial stresses,” Mech. Comp. Mater., 37, No. 5/6, 449–458 (2001).

    Google Scholar 

  57. A. N. Guz, Fundamentals of the Fracture Mechanics of Compressed Composites [in Russian], in 2 vols., Litera, Kyiv (2008). Vol. 1. Fracture in the Structure of a Material. Vol. 2. Related Failure Mechanisms.

  58. A. N. Guz, “Mechanics of crack propagation in materials with initial (residual) stresses (review),” Int. Appl. Mech., 47, No. 2, 121–168 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  59. A. N. Guz, “Establishing the foundations of the mechanics of fracture of materials compressed along cracks (review),” Int. Appl. Mech., 50, No. 1, 1–57 (2014).

    ADS  MathSciNet  Google Scholar 

  60. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], in two parts, LAP LAMBERT Academic Publishing, Saarbrucken/Deutschland (2016). Part 1. General Issues. Waves in Unbounded Bodies and Surface Waves. Part 2. Waves in Semibounded Bodies.

  61. A. N. Guz and I. A. Guz, “Continuum approximation in the theory of stability of composite laminates,” DAN SSSR, 305, No. 5, 1073–1076 (1989).

    Google Scholar 

  62. A. N. Guz and I. A. Guz, “Local instability of composite laminates,” DAN SSSR, 311, No. 4, 812–814 (1990).

    Google Scholar 

  63. A. N. Guz, I. A. Guz, A. V. Men’shikov, and V. A. Men’shikov, “Three-dimensional problems in the dynamic fracture mechanics of materials with interface cracks (review),” Int. Appl. Mech., 49, No. 1, 1–61 (2013).

    ADS  MathSciNet  MATH  Google Scholar 

  64. A. N. Guz and V. A. Dekret, Short-Fiber Model in the Theory of the Stability of Composites [in Russian], LAP Lambert Acad. Publ., Saarbrücken/Deutschland (2015).

    Google Scholar 

  65. A. N. Guz and V. A. Dekret, “Finite-fiber model in the three-dimensional theory of stability of composites (review),” Int. Appl. Mech., 52, No. 1, 1–48 (2016).

    ADS  Google Scholar 

  66. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Plane problems of stability of composite materials with a finite-size filler,” Mech. Comp. Mater., 36, No. 1, 49–54 (2000).

    Google Scholar 

  67. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Interaction of short fibers in a matrix during loss of stability: Plane problem,” in: Problems of Mechanics [in Russian], Fizmatlit, Moscow (2003), pp. 331–341.

  68. A. N. Guz, M. Sh. Dyshel’, G. G. Kuliev, and O. B. Milovanova, “Stability of thin plates with cracks,” Dokl. AN USSR, Ser. A, No. 5, 421–426 (1977).

  69. A. N. Guz, M. Sh. Dyshel’, G. G. Kuliev, and O. B. Milovanova, Fracture and Stability of Thin Bodies with Cracks [in Russian], Naukova Dumka, Kyiv (1981).

    MATH  Google Scholar 

  70. A. N. Guz and V. V. Zozulya, “Dynamic problem for a plane with a cut; interaction of the banks,” Sov. Phys. Dokl., 36, No. 5, 406–409 (1991).

    ADS  MATH  Google Scholar 

  71. A. N. Guz and V. V. Zozulya, “Dynamic contact problem for a plane with two cuts,” Sov. Phys. Dokl., 36, No. 11, 804–805 (1991).

    ADS  MATH  Google Scholar 

  72. A. N. Guz and V. V. Zozulya, “Dynamic problem in elasticity with constraints in the form of inequalities,” Dokl. AN USSR, No. 5, 47–50 (1991).

  73. A. N. Guz, V. V. Zozulya, and A. V. Men’shikov, “Contact interaction of the faces of an elliptic crack under the action of a normal harmonic load,” in: D. D. Ivlev and N. F. Morozov (eds.), Problems of Solid and Rock Mechanics [in Russian], Fizmatgiz, Moscow (2006), pp. 204–220.

  74. A. N. Guz, V. I. Knyukh, and V. M. Nazarenko, “Delamination of a composite compressed along two parallel macrocracks,” Fiz.-Khim. Mekh. Mater., 23, No. 1, 72–78 (1987).

    Google Scholar 

  75. À. N. Guz, V. P. Korzh, and V. N. Chekhov, “Stability of a layered half-plane under distributed surface loads,” DAN SSSR, 313, No. 6, 1381–1385 (1990).

    MATH  Google Scholar 

  76. A. N. Guz and Yu. V. Kokhanenko, “Brittle end-crushing fracture of composites (piecewise-homogeneous material model),” DAN SSSR, 296, No. 4, 805–808 (1987).

    Google Scholar 

  77. A. N. Guz and G. G. Kuliev, “Problem statement for the stability of deformation of thin bodies with cracks,” Dokl. AN USSR, Ser. A, No. 12, 1085–1088 (1976).

  78. A. N. Guz, G. G. Kuliev, and N. K. Zeinalov, “Bulging of a stretched plate with a curved hole,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 2, 163–168 (1979).

  79. A. N. Guz, G. G. Kuliev, and I. A. Tsurpal, “Concepts of stability in the theory of brittle fracture,” in: Abstracts of 4th All-Union Congress on Theory and Applied Mechanics [in Russian], Kyiv (1976).

  80. A. N. Guz and Yu. N. Lapusta, “On a method of investigating fibre stability in an elastic semi-infinite matrix near a free surface,” J. Appl. Math. Mech., 53, No. 4, 546–550 (1989).

    MathSciNet  MATH  Google Scholar 

  81. A. N. Guz and Yu. N. Lapusta, “Near-surface instability of a row of fibers in a composite,” DAN, 325, No. 4, 679–683 (1992).

    Google Scholar 

  82. A. N. Guz and D. A. Musaev, “Fracture of ribbon-reinforced composites under compression,” DAN SSSR, 301, No. 3, 565–568 (1988).

    Google Scholar 

  83. A. N. Guz, V. L. Bogdanov, and V. M. Nazarenko, “Fracture of a half-space with a near-surface penny-shaped crack in compression: Spatial nonaxisymmetric problem,” Dokl. AN SSSR, 319, No. 4, 835–839 (1991).

    Google Scholar 

  84. À. N. Guz and V. M. Nazarenko, “Fracture of a half-space with a surface penny-shaped crack: Axisymmetric problem,” Dokl. AN SSSR, 274, No. 1, 38–41 (1984).

    MATH  Google Scholar 

  85. A. N. Guz and V. M. Nazarenko, “Ductile near-surface fracture of a material compressed along macrocracks: Spatial problem,” Dokl. AN SSSR, 284, No. 4, 812–815 (1985).

    Google Scholar 

  86. A. N. Guz and V. M. Nazarenko, “Theory of surface delamination of composites in compression along a macrocrack,” Mech. Comp. Mater., 21, No. 5, 563–570 (1985).

    Google Scholar 

  87. A. N. Guz and V. M. Nazarenko, “Fracture of materials under compression along a periodic system of cracks under plane strain conditions,” J. Appl. Math. Mech., 51, No. 2, 261–256 (1987).

    MATH  Google Scholar 

  88. A. N. Guz, V. M. Nazarenko, and I. P. Starodubtsev, “Plane problem of the fracture of materials with two parallel cracks compressed along cracks,” in: V. G. Zubchaninov (ed.), Problems of Solid Mechanics [in Russian], Kalinin. Univ., Kalinin (1986), pp. 138–151.

  89. A. N. Guz, V. M. Nazarenko, and Yu. I. Khoma, “Fracture of a composite compressed along a cylindrical crack,” Dokl. NANU, No. 10, 48–52 (1995).

    Google Scholar 

  90. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, Introduction to the Mechanics of Nanocomposites [in Russian], Inst. Mekh. im. S. P. Timoshenko, Kyiv (2010).

    Google Scholar 

  91. A. N. Guz, E. A. Tkachenko, and V. N. Chekhov, “Calculation of stability of laminated composite coatings in tribotechnics,” Mech. Comp. Mater., 36, No. 2, 139–142 (2000).

    Google Scholar 

  92. A. N. Guz, E. A. Tkachenko, and V. N. Chekhov, “Surface instability of laminated coatings upon inelastic deformation,” Mech. Comp. Mater., 36, No. 6, 475–480 (2000).

    Google Scholar 

  93. A. N. Guz and M. A. Cherevko, “Revisiting the fracture mechanics of a fibrous composite under compression,” DAN SSSR, 268, No. 4, 806–808 (1981).

    Google Scholar 

  94. A. N. Guz and M. A. Cherevko, “Compression failure of a unidirectional fibrous composite with an elastoplastic matrix,” Mech. Comp. Mater., 18, No. 6, 656–663 (1983).

    Google Scholar 

  95. A. N. Guz, M. A. Cherevko, G. G. Margolin, and I. M. Romashko, “Failure of unidirectional boron-reinforced aluminum composites in compression,” Mech. Comp. Mater., 22, No. 2, 158–162 (1986).

    Google Scholar 

  96. A. N. Guz and V. N. Chekhov, “Surface buckling of a layered half-plane with layers subject to elastoplastic deformation,” DAN SSSR, 272, No. 3, 546–550 (1983).

    Google Scholar 

  97. A. N. Guz and V. N. Chekhov, “Surface instability of laminated materials at low and finite subcritical strains,” Mech. Comp. Mater., 20, No. 5, 590–584 (1985).

    Google Scholar 

  98. A. N. Guz and V. N. Chekhov, “Stability analysis of semi-infinite layered materials taking into account their elastic and elastoplastic properties,” Izv. AN SSSR, No. 1, 87–96 (1985).

  99. A. N. Guz and V. N. Chekhov, “Using variational methods in stability problems for layered semibounded materials,” DAN SSSR, 283, No. 5, 1123–1126 (1985).

    Google Scholar 

  100. A. N. Guz, V. N. Chekhov, and N. A. Shul’ga, “Surface instability of a half-space of periodic structure,” DAN SSSR, 266, No. 6, 1306–1310 (1982).

    MathSciNet  MATH  Google Scholar 

  101. I. A. Guz, “Stability of a composite compressed along an interface crack,” DAN SSSR, 325, No. 3, 455–458 (1992).

    MathSciNet  Google Scholar 

  102. I. A. Guz, “Plane problem of the stability of composites with slipping layers,” Mech. Comp. Mater., 27, No. 5, 547–551 (1992).

    Google Scholar 

  103. I. A. Guz, “Stability of a composite compressed along two interface microcracks,” DAN SSSR, 328, No. 4, 437–439 (1993).

    Google Scholar 

  104. I. A. Guz, “Composites with interlamination cracks: Stability under compression along two microcracks between orthotropic layers,” Mech. Comp. Mater., 29, No. 6, 581–586 (1994).

    Google Scholar 

  105. I. A. Guz, “Stability of composites compressed along an array of parallel interlaminar cracks,” Dokl. NANU, No. 6, 44–47 (1995).

  106. Yu. M. Dal’, “Local bending of a stretched plate with a crack,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 4, 135–141 (1978).

  107. V. A. Dekret, “Solving the plane buckling problem for a composite reinforced with two short fibers,” Dop. NANU, No. 8, 37–40 (2003).

  108. V. A. Dekret, “Plane buckling problem for a composite reinforced with two parallel short fibers,” Dop. NANU, No. 12, 38–41 (2003).

  109. V. A. Dekret, “Stability of a composite reinforced with a periodic row of inline short fibers,” Dop. NANU, No. 11, 47–50 (2004).

  110. V. A. Dekret, “Stability of a composite reinforced with a periodic row of parallel short fibers,” Dop. NANU, No. 12, 41–44 (2004).

  111. V. A. Dekret, “Stability of a composite under-reinforced with short fibers near the free surface,” Dop. NANU, No. 10, 49–51 (2006).

  112. M. V. Dovzhik, “Fracture of a half-space compressed along a penny-shaped crack located at a short distance from the surface,” Int. Appl. Mech., 48, No. 3, 294–304 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  113. M. V. Dovzhik, “Fracture of a material compressed along two closely spaced penny-shaped cracks,” Int. Appl. Mech., 49, No. 1, 563–572 (2012).

    MathSciNet  MATH  Google Scholar 

  114. M. V. Dovzhik, “Fracture of a material compressed along a periodic array of closely spaced penny-shaped cracks,” Dop. NAN Ukrainy, No. 10, 100–105 (2013).

  115. M. V. Dovzhik and V. M. Nazarenko, “Fracture of a material compressed along two closely spaced penny-shaped cracks,” Int. Appl. Mech., 48, No. 4, 423–429 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  116. M. V. Dovzhik and V. M. Nazarenko, “Fracture of a material compressed along a periodic set of closely spaced cracks,” Int. Appl. Mech., 48, No. 6, 710–718 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  117. M. Sh. Dyshel’, “Allowing for the local buckling of plates with cracks in experimental determination of the stress intensity factor,” Dokl. AN USSR, Ser. A, No. 11, 40–44 (1988).

  118. V. M. Enotov and R. L. Salganik, “Beam approximation in the theory of cracks,” Izv. AN SSSR, Mekh., No. 5, 95–102 (1965).

  119. V. V. Zozulya, “Dynamic problems in the theory of cracks with contact, stick, and sliding areas,” Dokl. AN USSR, Ser. A, No. 1, 47–50 (1990).

  120. V. V. Zozulya, “Dynamic problems in the theory of cracks with contact, stick, and slip areas,” Dokl. AN USSR, Ser. A, No. 3, 53–50 (1990).

  121. V. V. Zozulya, “Harmonic load acting on a crack with interacting edges in an unbounded body,” Dokl. AN USSR, Ser. A, No. 4, 46–49 (1990).

  122. V. V. Zozulya, “Hadamard integrals in dynamic problems of the theory of cracks,” Dokl. AN USSR, Ser. A, No. 2, 19–22 (1991).

  123. V. V. Zozulya, “Dynamic problem for a plane with two cracks with contacting edges,” Dokl. AN USSR, No. 8, 75–80 (1991).

  124. V. V. Zozulya, “Solving dynamic problems for bodies with cracks by the method of boundary integral equations,” Dokl. AN USSR, Ser. A, No. 3, 38–43 (1992).

  125. A. Yu. Ishlinskii, “Stability of the equilibrium of elastic bodies in the context of the mathematical theory of elasticity,” Ukr. Mat. J., 6, No. 2, 140–146 (1954).

    Google Scholar 

  126. M. V. Keldysh and L. I. Sedov, “Effective solution of some boundary-value problems for harmonic functions,” Dokl. AN SSSR, 16, No. 1, 7–10 (1937).

    MATH  Google Scholar 

  127. L. J. Broutman and R. H. Krock (eds.), Composite Materials, in 8 vols., Academic Press, New York–London (1974–1975).

  128. Yu. V. Kokhanenko, “Applying the finite-difference method to problems of elastic stability,” Dop. AN URSR, Ser. A, No. 7, 537–539 (1973).

  129. Yu. V. Kokhanenko, “One method of solving problems of the three-dimensional stability of ribbon composites,” Dokl. AN USSR, Ser. A, No. 2, 31–33 (1989).

  130. G. G. Kuliev, “Fracture of deformable bodies with a central vertical crack in a homogeneous force field,” Dokl. AN USSR, Ser. A, No. 8, 714–717 (1978).

  131. G. G. Kuliev, “Buckling near a crack preceding brittle fracture,” Dokl. AN USSR, Ser. A, No. 5, 355–358 (1979).

  132. Yu. N. Lapusta, “Method of stability analysis of two fibers in an elastic semi-infinite matrix,” Dokl. AN USSR, Ser. A, No. 1, 42–45 (1989).

  133. Yu. N. Lapusta, “Allowing for the effect of the free boundary on the stability of a periodic row of fibers in an elastic semi-infinite matrix,” Dokl. AN USSR, Ser. A, No. 5, 34–37 (1989).

  134. Yu. N. Lapusta, “Solving the problem of the near-surface buckling of a periodic array of fibers in an elastic matrix,” Dokl. AN USSR, Ser. A, No. 7, 48–52 (1989).

  135. Yu. N. Lapusta, “Possible buckling modes of a fiber in a semi-infinite matrix,” Dokl. AN USSR, Ser. A, No. 11, 42–45 (1989).

  136. Yu. N. Lapusta, “Stability of a row of fibers near the free flat edge of a matrix under axial compression,” Mekh. Komp. Mater., No. 4, 739–742 (1990).

  137. Yu. N. Lapusta, “Stability of a fiber near a cavity in an elastoplastic matrix,” Dokl. AN USSR, Ser. A, No. 9, 80–84 (1991).

  138. Yu. N. Lapusta, “Near-surface instability of a periodic array of fibers in an elastic matrix,” Dokl. AN USSR, Ser. A, No. 8, 70–75 (1992).

  139. L. S. Leibenzon, “Application of harmonic functions in stability analysis of spherical and cylindrical shells,” in: Collected Works [in Russian], Vol. 1, Izd. AN SSSR, Moscow (1951), pp. 110–121.

  140. S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body, Mir, Moscow (1981).

    MATH  Google Scholar 

  141. A. V. Men’shikov, “Spatial contact problem for two coaxial circular cracks under normal harmonic loading,” Dop. NANU, No. 6, 44–49 (2005).

  142. A. V. Men’shikov, “Stress intensity factors for a circular crack with contacting edges under harmonic loading,” Probl. Mashinostr., 9, No. 2, 43–47 (2006).

    Google Scholar 

  143. A. V. Men’shikov and I. A. Guz, “Dependence of the shear stress intensity factors on the friction force under harmonic loading of a circular crack,” Probl. Mashinostr., 9, No. 3, 65–71 (2006).

    Google Scholar 

  144. A. V. Men’shikov and M. V. Men’shikov, “Studying the contact interaction of crack faces by the Galerkin method,” Teor. Prikl. Mekh., 41, 151–155 (2005).

    Google Scholar 

  145. A. N. Guz (ed.), Mechanics of Composite Materials [in Russian], in 12 vols., Naukova Dumka (Vols. 1–4), A.S.K. (Vols. 5–12), Kyiv (1993–2003). Vol. 1. V. T. Golovchan (ed.), Statics of Materials (1993). Vol. 2. N. A. Shul’ga (ed.), Dynamics and Stability of Materials (1993). Vol. 3. L. P. Khoroshun (ed.), Statistical Mechanics and Effective Properties of Materials (1993). Vol. 4. A. N. Guz and S. D. Akbarov (eds.), Mechanics of Materials with Curved Structure (1995). Vol. 5. A. A. Kaminsky (ed.), Fracture Mechanics (1996). Vol. 6. N. A. Shul’ga and V. T. Tomashevskii (eds.), Process-Induced Stresses and Strains in Materials (1997). Vol. 7. A. N. Guz, A. S. Kosmodamianskii, and V. P. Shevchenko (eds.), Stress Concentration (1998). Vol. 8. Ya. M. Grigorenko, Statics of Structural Members (1999). Vol. 9. V. D. Kubenko (ed.), Dynamics of Structural Members (1999). Vol. 10. I. Yu. Babich (ed.), Stability of Structural Members (2001). Vol. 11. Ya. M. Grigorenko and Yu. N. Shevchenko (eds.), Numerical Methods (2002). Vol. 12. A. N. Guz and L. P. Khoroshun (eds.), Applied Research (2003).

  146. V. V. Panasyuk (ed.), Fracture Mechanics and Structural Strength: Handbook [in Russian], in 4 vols., Kyiv, Naukova Dumka (1988–1990). Vol. 1. V. V. Panasyuk, A. E. Andreikiv, and V. Z. Parton, Foundations of the Fracture Mechanics of Materials (1988). Vol. 2. M. P. Savruk, Stress Intensity Factors in Cracked Bodies (1988). Vol. 3. S. E. Kovchik and E. M. Morozov, Characteristics of Short-Term Crack Resistance of Materials and Methods of Determining Them (1988). Vol. 4. O. N. Romaniv, S. Ya. Yarema, G. N. Nikiforchin, N. A. Makhutov, and M. N. Stadnik, Fatigue and Cyclic Crack Resistance of Structural Materials (1990).

  147. A. M. Mikhailov, “Dynamic problems of the theory of cleavages in a beam approximation,” J. Appl. Mech. Tech. Phys., 7, No. 5, 122–125 (1966).

    Google Scholar 

  148. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen (1975).

    MATH  Google Scholar 

  149. V. M. Nazarenko, “The spatial problem of the compression of a material along a periodic system of parallel circular cracks,” J. Appl. Math. Mech., 52, No. 1, 120–125 (1988).

    MathSciNet  MATH  Google Scholar 

  150. V. M. Nazarenko, “Compression of a material along a near-surface penny-shaped crack: Nonaxisymmetric problem,” Prikl. Mekh., 25, No. 1, 124–127 (1989).

    Google Scholar 

  151. V. M. Nazarenko and Yu. I. Khoma, “A method for solving problems of the fracture of an unbounded material with a cylindrical crack under axial compression (case of unequal roots),” Dokl. NAN Ukrainy, No. 7, 62–67 (1994).

  152. V. M. Nazarenko and Yu. I. Khoma, “Compression of an infinite composite material along a finite cylindrical crack,” Mech. Comp. Mater., 31, No. 1, 20–25 (1995).

    Google Scholar 

  153. H. S. Katz and J. V. Milevski, Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold, New York (1978).

    Google Scholar 

  154. A. N. Guz (ed.), Nonclassical Problems of Fracture Mechanics [in Russian], in four vols., five books, Naukova Dumka, Kyiv (1990–1993). Vol. 1. A. A. Kaminsky, Fracture of Viscoelastic Bodies with Cracks (1990). Vol. 2. A. N. Guz, Brittle Fracture of Prestressed Materials (1991). Vol. 3. A. A. Kaminskii and D. N. Gavrilov, Delayed Fracture of Polymeric and Composite Materials with Cracks (1992). Vol. 4, Book 1. A. N. Guz, M. Sh. Dyshel’, and V. M. Nazarenko, Fracture and Stability of Materials with Cracks (1992). Vol. 4, Book 2, A. N. Guz and V. V. Zozulya, Brittle Fracture of Materials under Dynamic Loads (1993).

  155. V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity, Dover, New York (1999).

    Google Scholar 

  156. V. Z. Parton and V. G. Boriskovskii, Dynamic Fracture Mechanics [in Russian], Mashinostroenie, Moscow (1985).

    Google Scholar 

  157. V. Z. Parton and V. G. Boriskovskii, Dynamics of Brittle Fracture [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  158. J. E. Brock, R. G. Costello, and D. A. Pellet, “Buckling of a tensioned panel containing circular hole,” AIAA J., 6, No. 10, 2012–2014 (1968).

    ADS  Google Scholar 

  159. G. S. Pisarenko, V. P. Naumenko, O. V. Mitchenko, and G. S. Volkov, “Experimental determination of the value of K I in compression of a plate along the crack line,” Strength of Materials, 16, No. 11, 1497–1505 (1984).

    Google Scholar 

  160. H. Liebowitz (ed.), Fracture. An Advanced Treatise, in 7 vols., Academic Press, New York–London (1968–1975).

  161. B. W. Rosen, “Mechanics of composite strengthening,” in: Fiber Composite Materials, American Society of Metals, Metals Park, Ohio (1965), pp. 37–75.

  162. B. W. Rosen and N. F. Dow, “Mechanics of failure of fibrous composites,” in: H. Liebowitz (ed.), Fracture, An Advanced Treatise, Vol. 7, Academic Press, New York (1972), pp. 612–672.

  163. L. J. Broutman and R. H. Krock (eds.), Modern Composite Materials, Addison-Wesley, Reading, Mass. (1967).

  164. A. N. Sporykhin, “Instability of the deformation of layered bodies in hardening plastic materials,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 1, 63–65 (1975).

  165. Ya. S. Uflyand, Integral Transforms in the Theory of Elasticity [in Russian], Izd.ANSSSR, Moscow–Leningrad (1963).

    MATH  Google Scholar 

  166. Ya. S. Uflyand, Method of Dual Equations in Mathematical Physics [in Russian], Nauka, Leningrad (1977).

    MATH  Google Scholar 

  167. M. A. Cherevko, “Stability of a fiber in an elastoplastic matrix,” Dokl. AN USSR, Ser. A, No. 9, 43–46 (1982).

  168. M. A. Cherevko, “Stability of a hollow fiber in an elastoplastic matrix,” Dokl. AN USSR, Ser. A, No. 11, 35–38 (1982).

  169. M. A. Cherevko, “Stability of a fiber in an elastoplastic matrix when contact is imperfect,” Prikl. Mekh., 20, No. 9, 122–123 (1984).

    Google Scholar 

  170. M. A. Cherevko, “Stability of a row of circular fibers in an elastic-plastic matrix,” Sov. Appl. Mech., 21, No. 12, 1160–1164 (1985).

    ADS  MATH  Google Scholar 

  171. G. P. Cherepanov, “On the buckling under tension of a membrane containing holes,” J. Appl. Math. Mech., 27, No. 2, 405–420 (1963).

    MathSciNet  MATH  Google Scholar 

  172. G. P. Cherepanov, “Crack propagation in continuous media,” J. Appl. Math. Mech., 31, No. 3, 503–512 (1967).

    MATH  Google Scholar 

  173. G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New York (1974).

    Google Scholar 

  174. G. P. Cherepanov, Fracture Mechanics of Composite Materials [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  175. V. N. Chekhov, “Surface instability of layered materials under finite strains,” Dokl. AN USSR, Ser. A, No. 5, 48–50 (1983).

  176. S. D. Akbarov, “A method of solving problems in the mechanics of composite materials with curved viscoelastic layers,” Sov. Appl. Mech., 21, No. 3, 221–225 (1985).

    ADS  MathSciNet  MATH  Google Scholar 

  177. S. D. Akbarov, “Normal stresses in a fiber composite with curved structures having a low concentration of filler,” Sov. Appl. Mech., 21, No. 11, 1065–1069 (1985).

    ADS  MathSciNet  Google Scholar 

  178. S. D. Akbarov, “Stress state in a viscoelastic fibrous composite with curved structures and low fiber concentration,” Sov. Appl. Mech., 22, No. 6, 506–513 (1986).

    ADS  Google Scholar 

  179. S. D. Akbarov, “Stress distribution in multi-layered composite with small-scale antiphase curvatures in structure,” Sov. Appl. Mech., 23, No. 2, 107–111 (1987).

    ADS  MathSciNet  Google Scholar 

  180. S. D. Akbarov, “Stress state in a laminar composite material with local warps in the structure,” Sov. Appl. Mech., 24, No. 5, 445–452 (1988).

    ADS  MATH  Google Scholar 

  181. S. D. Akbarov, “Distribution of self-balanced stresses in a laminated composite material with antiphase locally distorted structures,” Sov. Appl. Mech., 24, No. 6, 560–566 (1988).

    ADS  Google Scholar 

  182. S. D. Akbarov, “Solution of problems of the stress-strain state of composite materials with curvilinearly anisotropic layers,” Sov. Appl. Mech., 25, No. 1, 12–20 (1989).

    ADS  MATH  Google Scholar 

  183. S. D. Akbarov, “The distribution of self-equilibrated stresses in fibrous composite materials with twisted fibers,” Mech. Comp. Mater., No. 3, 803–812 (1990).

  184. S. D. Akbarov, “On the crack problems in composite materials with locally curved layers,” Mech. Comp. Mater., No. 6, 750–759 (1994).

  185. S. D. Akbarov, “On the determination of normalized non-linear mechanical properties of composite materials with periodically curved layers,” Int. J. Solid Struct., 32, No. 21, 3229–3243 (1995).

    Google Scholar 

  186. S. D. Akbarov, “On the three-dimensional stability loss problems of elements of constructions fabricated from the viscoelastic composite materials,” Mech. Comp. Mater., 34, No. 6, 537–544 (1998).

    Google Scholar 

  187. S. D. Akbarov, “Three-dimensional stability loss problems of viscoelastic composite materials and structural members,” Int. Appl. Mech., 43, No. 10, 1069–1089 (2007).

    ADS  Google Scholar 

  188. S. D. Akbarov, Stability Loss and Buckling Delamination, Springer, Berlin (2012).

    Google Scholar 

  189. S. D. Akbarov and S. A. Aliev, “Stress state in laminar composite material with partial distortion in structure,” Sov. Appl. Mech., 26, No. 12, 1127–1132 (1990).

    ADS  MATH  Google Scholar 

  190. S. D. Akbarov and Z. R. Djamalov, “Influence of geometric non-linearly calculation of stress disturbation in laminar composites with curved structures,” Mech. Comp. Mater., No. 6, 799–812 (1992).

  191. S. D. Akbarov and A. N. Guz, “Method of solving problems in mechanics of composite materials with bent layers,” Sov. Appl. Mech., 20, No. 4, 299–304 (1984).

    ADS  MATH  Google Scholar 

  192. S. D. Akbarov and A. N. Guz, “Method of solving problems in mechanics of fiber composites with curved structures,” Sov. Appl. Mech., 20, No. 9, 777–784 (1984).

    ADS  MATH  Google Scholar 

  193. S. D. Akbarov and A. N. Guz, “Model of a piecewise-homogeneous body in the mechanics of laminar composites with fine-scale curvatures,” Sov. Appl. Mech., 21, No. 4, 313–318 (1985).

    ADS  MATH  Google Scholar 

  194. S. D. Akbarov and A. N. Guz, “Stress state of a fiber composite with curved structures with a low fiber concentration,” Sov. Appl. Mech., 21, No. 6, 560–565 (1985).

    ADS  Google Scholar 

  195. S. D. Akbarov and A. N. Guz, “Continuum theory in the mechanics of composite materials with small-scale structural distorsion,” Sov. Appl. Mech., 27, No. 1, 107–117 (1991).

    ADS  MATH  Google Scholar 

  196. S. D. Akbarov and A. N. Guz, “Mechanics of composite materials with curved structures (survey). Composite laminates,” Sov. Appl. Mech., 27, No. 6, 535–550 (1991).

    ADS  MATH  Google Scholar 

  197. S. D. Akbarov and A. N. Guz, Mechanics of Curved Composites, Kluwer Academic Publisher, Dordrecht–Boston–London (2000).

    MATH  Google Scholar 

  198. S. D. Akbarov and A. N. Guz, “Mechanics of curved composites (piecewise-homogeneous body model),” Int. Appl. Mech., 38, No. 12, 1415–1439 (2002).

    ADS  MATH  Google Scholar 

  199. S. D. Akbarov and A. N. Guz, “Mechanics of curved composites and some related problems for structural members,” Mech. Adv. Mater. Struct., 11, Pt. II, No. 6, 445–515 (2004).

    Google Scholar 

  200. S. D. Akbarov, A. N. Guz, Z. R. Djamalov, and E. A. Movsumov, “Solution of problems involving the stress state of composite materials with curved layers in the geometrically nonlinear statement,” Int. Appl. Mech., 28, No. 6, 343–346 (1992).

    ADS  Google Scholar 

  201. S. D. Akbarov, A. N. Guz, and S. M. Mustafaev, “Mechanics of composite materials with anisotropic distorted layers,” Sov. Appl. Mech., 23, No. 6, 528–533 (1987).

    ADS  MATH  Google Scholar 

  202. S. D. Akbarov, A. N. Guz, and N. Yahnioglu, “Mechanics of composite materials with curved structures and elements of constructions (review),” Int. Appl. Mech., 34, No. 11, 1067–1078 (1998).

    ADS  MATH  Google Scholar 

  203. S. D. Akbarov, A. N. Guz, and A. D. Zamanov, “Natural vibrations of composite materials having structures with small-scale curvatures,” Int. Appl. Mech., 28, No. 12, 794–800 (1992).

    ADS  MATH  Google Scholar 

  204. S. D. Akbarov, A. Cilli, and A. N. Guz, “The theoretical strength limit in compression of viscoelastic layered composite materials,” Composites. Part B: Engineering, 365–372 (1999).

  205. S. D. Akbarov, M. D. Verdiev, and A. N. Guz, “Stress and deformation in a layered composite material with distorted layers,” Sov. Appl. Mech., 24, No. 12, 1146–1153 (1988).

    ADS  MATH  Google Scholar 

  206. S. D. Akbarov, R. Kosker, and Y. Ucan, “Stress distribution in a composite material with a row of antiphase periodically curved fibers,” Int. Appl. Mech., 42, No. 4, 486–488 (2006).

    ADS  MATH  Google Scholar 

  207. S. D. Akbarov, F. G. Maksudov, P. G. Panakhov, and A. I. Seyfullayev, “On the crack problems in composite materials with curved layers,” Int. J. Eng. Sci., 32, No. 6, 1003–1016 (1994).

    MATH  Google Scholar 

  208. S. D. Akbarov, Mustafaev S. M. “Distribution of self-balanced stresses in composite materials with curved curvilinearly anisotropic layers,” Sov. Appl. Mech., 27, No. 12, 1225–1227 (1991).

    ADS  Google Scholar 

  209. S. D. Akbarov and O. G. Rzayev, “Delamination of unidirectional viscoelastic composite materials,” Mech. Comp. Mater., 39, No. 3, 368–374 (2002).

    Google Scholar 

  210. S. D. Akbarov, T. Sisman, and N. Yahnioglu, “On the fracture of the unidirectional composites in compression,” Int. J. Eng. Sci., 35, No. 1, 1115–1136 (1997).

    MATH  Google Scholar 

  211. S. D. Akbarov and N. Yahnioglu, “Stress distribution in a strip fabricated from a composite material with small-scale curved structure,” Int. Appl. Mech., 32, No. 9, 684–690 (1996).

    ADS  MATH  Google Scholar 

  212. S. D. Akbarov and N. Yahnioglu, “The method for investigation of the general theory of stability problems of structural elements fabricated from the viscoelastic composite materials,” Composites, Part. B: Engineering, 32, No. 5, 475–482 (2001).

    Google Scholar 

  213. I. Yu. Babich, “On the stability of a fiber in a matrix under small deformations,” Sov. Appl. Mech., 9, No. 4, 370–375 (1973).

    ADS  Google Scholar 

  214. I. Yu. Babich and V. N. Chekhov, “Surface and internal instability in laminated composites,” Sov. Appl. Mech., 25, No. 1, 21–28 (1989).

    ADS  MATH  Google Scholar 

  215. I. Yu. Babich, I. N. Garashchuk, and A. N. Guz, “Stability of a fiber in an elastic matrix with nonuniform subcritical state,” Sov. Appl. Mech., 19, No. 11, 941–947 (1983).

    ADS  MATH  Google Scholar 

  216. I. Yu. Babich and A. N. Guz, “Deformation instability of laminated materials,” Sov. Appl. Mech., 5, No. 5, 488–491 (1969).

    ADS  Google Scholar 

  217. I. Yu. Babich and A. N. Guz, “Methods of studing three-dimensional problems of stability in highly-elastic deformations,” Sov. Appl. Mech., 8, No. 6, 596–599 (1972).

    ADS  Google Scholar 

  218. I. Yu. Babich, A. N. Guz, and V. N. Chekhov, “The three-dimensional theory of stability of fibrous and laminated materials,” Int. Appl. Mech., 37, No. 9, 1103–1141 (2001).

    ADS  MATH  Google Scholar 

  219. I. Yu. Babich, A. N. Guz, and V. I. Kilin, “Aspects of the fracture and stability of laminated structures with elastic strains,” Sov. Appl. Mech., 22, No. 7, 601–605 (1986).

    ADS  Google Scholar 

  220. I. Yu. Babich, A. N. Guz, and N. A. Shul’ga, “Investigation of the dynamics and stability of composite materials in a three-dimensional formulation (survey),” Sov. Appl. Mech., 18, No. 1, 1–21 (1982).

    ADS  MATH  Google Scholar 

  221. V. M. Babich, A. N. Guz, and V. M. Nazarenko, “Disk-shaped normal-rupture crack near the surface of a semiinfinite body with initial stresses,” Sov. Appl. Mech., 27, No. 7, 637–643 (1991).

    ADS  MATH  Google Scholar 

  222. M. A. Biot, Mechanics of Incremental Deformations, Willey, New York (1965).

    Google Scholar 

  223. M. A. Biot, “Surface instability in finite anisotropic elasticity under initial stress,” Proc. Roy. Soc., 273, No. 1354 (1963).

  224. M. A. Biot, “Interface instability in finite elasticity under initial stress,” Proc. Roy. Soc., 273, No. 1354 (1963).

  225. V. L. Bogdanov, “On a circular shear crack in a semi-infinite composite with initial stresses,” Mater. Sci., 43, No. 2, 321–330 (2007).

    Google Scholar 

  226. V. L. Bogdanov, “Effect of residual stresses on fracture of semi-infinite composite with cracks,” J. Mech. Adv. Mater. Struct., 15, No. 6, 453–460 (2008).

    Google Scholar 

  227. V. L. Bogdanov, “Influence of initial stresses on fracture of composite materials containing interacting cracks,” J. Math. Sci., 165, No. 3, 371–384 (2010).

    Google Scholar 

  228. V. L. Bogdanov, “Nonaxisymmetric problem of the stress-strain state of an elastic half-space with a near-surface circular crack under action of loads along it,” J. Math. Sci., 174, No. 3, 341–366 (2011).

    Google Scholar 

  229. V. L. Bogdanov, “Influence of initial stresses on the stressed state of a composite with a periodic system of parallel coaxial normal tensile cracks,” J. Math. Sci., 186, No. 1, 1–13 (2012).

    Google Scholar 

  230. V. L. Bogdanov, “On the interaction of a periodic system of parallel coaxial radial-shear cracks in a prestressed composite,” J. Math. Sci., 187, No. 5, 606–618 (2012).

    MathSciNet  Google Scholar 

  231. V. L. Bohdanov, “Mutual influence of two parallel coaxial cracks in a composite material with initial stresses,” Mater. Sci., 44, No. 4, 530–540 (2008).

    Google Scholar 

  232. V. L. Bohdanov, “Influence of initial stresses on the fracture of a composite material weakened by a subsurface mode III crack,” J. Math. Sci., 205, No. 5, 621–634 (2015).

    MathSciNet  Google Scholar 

  233. V. L. Bogdanov, A. N. Guz, V. M. Nazarenko “Fracture of semiinfinite material with a circular surface crack in compression along the crack plane,” Int. Appl. Mech., 28, No. 11, 687–704 (1992).

    ADS  MATH  Google Scholar 

  234. V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Nonaxisymmetric compressive failure of a circular crack parallel to a surface of halfspace,” Theor. Appl. Fract. Mech., 22, 239–247 (1995).

    MathSciNet  Google Scholar 

  235. V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Fracture of a body with a periodic set of coaxial cracks under forces directed along them: an axisymmetric problem,” Int. Appl. Mech., 45, No. 2, 111–124 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  236. V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Stress–strain state of a material under forces acting along a periodic set of coaxial mode II penny-shaped cracks,” Int. Appl. Mech., 46, No. 12, 1339–1350 (2010).

    MathSciNet  MATH  Google Scholar 

  237. V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Nonclassical problems in the fracture mechanics of composites with interacting cracks,” Int. Appl. Mech., 51, No. 1, 64–84 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  238. V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Spatial problems of the fracture of materials loaded along cracks (Review),” Int. Appl. Mech., 51, No. 5, 489–560 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  239. V. L. Bogdanov and V. M. Nazarenko, “Study of the compressive failure of a semi-infinite elastic material with a harmonic potential,” Int. Appl. Mech., 30, No. 10, 760–765 (1994).

    ADS  Google Scholar 

  240. H. Budiansky, “Micromechanics,” Compos. Struct., 16, No. 1, 3–13 (1983).

    MATH  Google Scholar 

  241. V. N. Chekhov, “Folding of rocks with periodic structure,” Sov. Appl. Mech., 20, No. 3, 216–221 (1984).

    ADS  MathSciNet  MATH  Google Scholar 

  242. V. N. Chekhov, “Effect of the hereditary properties of a medium on the surface instability of a layered half-space,” Sov. Appl. Mech., 20, No. 7, 613–618 (1984).

    ADS  MATH  Google Scholar 

  243. V. N. Chekhov, “Surface instability of a layered medium connected to a uniform half-space,” Sov. Appl. Mech., 20, No. 11, 1018–1024 (1984).

    ADS  MATH  Google Scholar 

  244. V. N. Chekhov, “Influence of a surface load on stability of laminar bodies,” Sov. Appl. Mech., 24, No. 9, 839–845 (1988).

    ADS  MATH  Google Scholar 

  245. V. N. Chekhov, “On the formation of linear folds in regularly layered rock masses under biaxial loading,” Int. Appl. Mech., 41, No. 12, 1350–1356 (2005).

    ADS  Google Scholar 

  246. M. A. Cherevko, “Stability of a biperiodic system of circular fibers in an elastoplastic matrix,” Sov. Appl. Mech., 22, No. 4, 316–321 (1986).

    ADS  Google Scholar 

  247. A. Kelly and C. Zweden (eds.), Comprehensive Composite Materials, Vols. 1–6, Elsevier (2006). Vol. 1. Tsu-Wei Chou (ed.), Fiber Reinforcements and General Theory of Composites. Vol. 2. R. Talreja and J.-A. E. Mänson (eds.), Polymer Matrix Composites. Vol. 3. T.W. Clyne (ed.), Metal Matrix Composites. Vol. 4. R. Warren (ed.), Carbon/Carbon, Cement and Ceramic Composites. Vol. 5. L. Carlsson, R.L. Crane, and K. Uchino (eds.), Test Methods, Non-destructive Evaluation and Smart Materials. Vol. 6. W.G. Bader, K. Kedsvard, and Y. Sawada (eds.), Design and Applications.

  248. Ian Milne, R.O. Ritchie, and B. Karihaloo, Comprehensive Structural Integrity, Vols. 1–10, Elsevier (2006). Vol. 1. Ian Milne, R. O. Ritchie, and B. Karihaloo (eds.), Structural Integrity Assessment—Examples and Case Studies. Vol. 2. B. Karihaloo and W. G. Knauss, Fundamental Theories and Mechanisms of Failure. Vol. 3. R. de Borst and H.A. Mang (eds.), Numerical and Computational Methods. Vol. 4. R. O. Ritchie and Y. Marakami (eds.), Cyclic Loading and Fatigue. Vol. 5. A. Saxena (ed.), Creep and High-Temperature Failure. Vol. 6. J. Petit and P. Scott (eds.), EnvironmentallyAssisted Fracture. Vol. 7. R. A. Ainsworth and K.-H. Schwable (eds.), Practical Failure Assessment Methods. Vol. 8. W. Gerberich and Wei Yang (eds.), Interfacial and Nanoscale Failure. Vol. 9. Yin-Wing Mai and Swee-Hin Tech (eds.), Bioengineering. Vol. 10. Indexes.

  249. I. W. Craggs, “On the propagation of a crack in an elastic-brittle materials,” J. Mech. Phys. Solids., 8, No. 1, 66–75 (1960).

    ADS  MathSciNet  MATH  Google Scholar 

  250. N. D. Cristescu, E. M. Craciun, and E. Soos, Mechanics of Elastic Composites, CRC Press (2003).

  251. Yu. M. Dal’ and Z. N. Litvinenkova, “Hypercritical deformation of a plate with a crack,” Sov. Appl. Mech., 11, No. 3, 278–284 (1975).

    ADS  Google Scholar 

  252. V. A. Dekret, “Two-dimensional buckling problem for a composite reinforced with a periodical row of collinear short fibers,” Int. Appl. Mech., 42, No. 6, 684–691 (2006).

    ADS  Google Scholar 

  253. V. A. Dekret, “Plane stability problem for a composite reinforced with a periodical row of parallel fibers,” Int. Appl. Mech., 44, No. 5, 498–504 (2008).

    ADS  Google Scholar 

  254. V. A. Dekret, “Near-surface instability of composites weakly reinforced with short fibers,” Int. Appl. Mech., 44, No. 6, 619–625 (2008).

    ADS  MathSciNet  Google Scholar 

  255. M. Sh. Dyshel’, “Failure in thin plate with a slit,” Sov. Appl. Mech., 14, No. 9, 1010–1012 (1978).

  256. M. Sh. Dyshel’, “Stability under tension of thin plates with cracks,” Sov. Appl. Mech., 14, No. 11, 1169–1172 (1978).

    ADS  MATH  Google Scholar 

  257. M. Sh. Dyshel’, “Fracture of plates with cracks under tension after loss of stability,” Sov. Appl. Mech., 17, No. 4, 371–375 (1981).

    ADS  Google Scholar 

  258. M. Sh. Dyshel’, “Stability of thin plates with cracks under biaxial tension,” Sov. Appl. Mech., 18, No. 10, 924–928 (1982).

    ADS  Google Scholar 

  259. M. Sh. Dyshel’, “Tension of a cylindrical shell with a slit,” Sov. Appl. Mech., 20, No. 10, 941–944 (1984).

    ADS  Google Scholar 

  260. M. Sh. Dyshel’, “Stability of a cracked cylindrical shell in tension,” Sov. Appl. Mech., 25, No. 6, 542–547 (1989).

    ADS  MATH  Google Scholar 

  261. M. Sh. Dyshel’, “Stress-intensity coefficient taking account of local buckling of plates with cracks,” Sov. Appl. Mech., 26, No. 1, 87–90 (1990).

    ADS  MATH  Google Scholar 

  262. M. Sh. Dyshel’, “Local stability loss and failure of cracked plates during the plastic deformation of materials,” Int. Appl. Mech., 30, No. 1, 44–47 (1994).

    ADS  Google Scholar 

  263. M. Sh. Dyshel’, “Tensile stability and failure of two-layer plates with cracks,” Int. Appl. Mech., 34, No. 3, 282–286 (1998).

    MATH  Google Scholar 

  264. M. Sh. Dyshel’, “Local buckling of extended plates containing cracks and cracklike defects, subject to the influence of geometrical parameters of the plates and defects,” Int. Appl. Mech., 35, No. 12, 1272–1276 (1999).

    ADS  MATH  Google Scholar 

  265. M. Sh. Dyshel’, “Influence of buckling of a tension plate with edge crack on fracture characteristics,” Int. Appl. Mech., 42, No. 5, 589–592 (2006).

    ADS  Google Scholar 

  266. M. Sh. Dyshel’, “Stability and fracture of plates with two edge cracks under tension,” Int. Appl. Mech., 42, No. 11, 1303–1306 (2006).

    ADS  Google Scholar 

  267. M. Sh. Dyshel’ and M. A. Mekhtiev, “Deformation of tensioned plates with cracks with allowance for local buckling,” Sov. Appl. Mech., 23, No. 6, 586–589 (1987).

    ADS  Google Scholar 

  268. M. Sh. Dyshel’ and M. A. Mekhtiev, “Failure of tensioned plates weakened by circular hole with radial cracks emanating from its contour,” Sov. Appl. Mech., 25, No. 5, 490–493 (1989).

    ADS  Google Scholar 

  269. M. Sh. Dyshel’ and O. B. Milovanova, “Method of experimentally analyzing the instability of plates with slits,” Sov. Appl. Mech., 13, No. 5, 491–494 (1977).

    ADS  Google Scholar 

  270. M. Sh. Dyshel’ and O. B. Milovanova, “Determination of the critical stresses in the case of tension of plates with a cut,” Sov. Appl. Mech., 14, No. 12, 1330–1332 (1978).

    ADS  Google Scholar 

  271. N. F. Dow and I. J. Gruntfest, “Deformation of most needed potentially possible improvements in materials for ballistic and space vehicles,” General Electric Co., Space Sci. Lab., TIRS 60 SD 389, June (1960).

  272. I. D. Eshelby, “The force on the elastic singularity,” Phil. Trans. Roy. Soc., Ser. A., 244, 87 (1951).

    ADS  MathSciNet  MATH  Google Scholar 

  273. G. P. Cherepanov (ed.), Fracture. A Topical Encyclopedia of Current Knowledge, Krieger Publishing Company, Malabar , Florida (1998).

  274. N. A. Flek, “Compressive failure of fiber composites,” in: Advances in Applied Mechanics, Vol. 33, Academic Press, New York (1997), pp. 43–119.

  275. A. E. Green, R. S. Rivlin, and R. T. Shield, “General theory of small elastic deformations superposed on finite elastic deformations,” Proc. Roy. Soc., Ser. A., 211, No. 1104, 128–154 (1952).

    ADS  MathSciNet  MATH  Google Scholar 

  276. A. A. Griffith, “The phenomena of rupture and flow in solids,” Phil. Trans. Roy. Soc., Ser. A., 211, No. 2, 163–198 (1920).

    Google Scholar 

  277. A. N. Guz, “Investigation the stability of elastic systems by means of linearized equations of elasticity theory,” Sov. Appl. Mech., 3, No. 2, 13–18 (1967).

    ADS  Google Scholar 

  278. A. N. Guz, “The stability of orthotropic bodies,” Sov. Appl. Mech., 3, No. 5, 17–22 (1967).

    ADS  Google Scholar 

  279. A. N. Guz, “Theory of cracks in elastic bodies with initial stresses. Formulation of problems, tear cracks,” Sov. Appl. Mech., 16, No. 12, 1015–1023 (1980).

    ADS  MATH  Google Scholar 

  280. A. N. Guz, “Theory of cracks in prestressed elastic bodies. Shear cracks and limiting cases,” Sov. Appl. Mech., 17, No. 1, 1–8 (1981).

    ADS  MATH  Google Scholar 

  281. A. N. Guz, “Theory of cracks in prestressed highly elastic materials,” Sov. Appl. Mech., 17, No. 2, 11–21 (1981).

    ADS  Google Scholar 

  282. A. N. Guz, “Theory of cracks in elastic bodies with initial stresses (stiff materials),” Sov. Appl. Mech., 17, No. 4, 311–315 (1981).

    ADS  MATH  Google Scholar 

  283. A. N. Guz, “Theory of cracks in elastic bodies with initial stresses (cleavage problem),” Sov. Appl. Mech., 17, No. 5, 405–411 (1981).

    ADS  MATH  Google Scholar 

  284. A. N. Guz, “Theory of cracks in elastic bodies with initial stresses (three-dimensional static problems),” Sov. Appl. Mech., 17, No. 6, 499–513 (1981).

    ADS  MATH  Google Scholar 

  285. A. N. Guz, “Three-dimensional problem for a disk-shaped crack in an elastic body with initial stress,” Sov. Appl. Mech., 17, No. 11, 963–970 (1981).

    ADS  MATH  Google Scholar 

  286. A. N. Guz, “General three-dimensional static problem for cracks in an elastic body with initial stress,” Sov. Appl. Mech., 17, No. 12, 1043–1050 (1981).

    ADS  MATH  Google Scholar 

  287. A. N. Guz, “Fracture mechanics of solids in compression along cracks,” Sov. Appl. Mech., 18, No. 3, 213–224 (1982).

    ADS  MATH  Google Scholar 

  288. A. N. Guz, “Mechanics of fracture of solids in compression along cracks (three-dimensional problem),” Sov. Appl. Mech., 18, No. 4, 283–293 (1982).

    ADS  MATH  Google Scholar 

  289. A. N. Guz, “Fracture mechanics of composites in compression along cracks,” Sov. Appl. Mech., 18, No. 6, 489–493 (1982).

    ADS  MATH  Google Scholar 

  290. A. N. Guz, “Mechanics of composite material failure under axial compression (brittle failure),” Sov. Appl. Mech., 18, No. 10, 863–872 (1982).

    ADS  Google Scholar 

  291. A. N. Guz, “Mechanics of composite material failure under axial compression (plastic failure),” Sov. Appl. Mech., 18, No. 11, 970–976 (1982).

    ADS  MATH  Google Scholar 

  292. A. N. Guz, “Continuum theory of fracture in the compression of composite materials with metallic matrix,” Sov. Appl. Mech., 18, No. 12, 1045–1052 (1982).

    ADS  MATH  Google Scholar 

  293. A. N. Guz, “Fracture of unidirectional composite materials under the axial compression,” in: Fracture of Composite Materials, Nijhoff (1982), pp. 173–182.

  294. A. N. Guz, “Mechanics of the brittle failure of materials with initial stress,” Sov. Appl. Mech., 19, No. 4, 293–307 (1983).

    ADS  Google Scholar 

  295. A. N. Guz, “Mechanics of composite materials with a small-scale structural flexure,” Sov. Appl. Mech., 19, No. 5, 383–392 (1983).

    ADS  MATH  Google Scholar 

  296. A. N. Guz, “Quasiuniform states in composites with small-scale curvatures in the structure,” Sov. Appl. Mech., 19, No. 6, 479–489 (1983).

    ADS  MATH  Google Scholar 

  297. A. N. Guz, “Three-dimensional theory of stability of elastic-viscous-plastic bodies,” Sov. Appl. Mech., 20, No. 6, 512–516 (1984).

    ADS  MATH  Google Scholar 

  298. A. N. Guz, “Foundations of mechanics of brittle fracture of materials with initial stresses,” in: Proc. 6th ICF6, India (1984), pp. 1223–1230.

  299. A. N. Guz, “Three-dimensional stability theory of deformed bodies. Internal instability,” Sov. Appl. Mech., 21, No. 11, 1023–1034 (1985).

    ADS  MATH  Google Scholar 

  300. A. N. Guz, “Three-dimensional stability theory of deformable bodies. Surface instability,” Sov. Appl. Mech., 22, No. 1, 17–26 (1986).

    ADS  MATH  Google Scholar 

  301. A. N. Guz, “Three-dimensional stability theory of deformable bodies. Stability of construction elements,” Sov. Appl. Mech., 22, No. 2, 97–107 (1986).

    ADS  MATH  Google Scholar 

  302. A. N. Guz, “Continuous theory of failure of composite materials under compression in the case of a complex stresses state,” Sov. Appl. Mech., 22, No. 4, 301–315 (1986).

    ADS  MATH  Google Scholar 

  303. A. N. Guz, “Criterion of brittle fracture near stress raisers in composites in compression,” Sov. Appl. Mech., 22, No. 12, 1148–1154 (1986).

    ADS  Google Scholar 

  304. A. N. Guz, “Continuous theory of failure of composite materials with buckling at the ends (brittle fracture),” Sov. Appl. Mech., 23, No. 1, 52–60 (1987).

    ADS  MATH  Google Scholar 

  305. A. N. Guz, “Continuous theory of failure of composite materials with buckling at the ends (plastic failure),” Sov. Appl. Mech., 23, No. 5, 411–417 (1987).

    ADS  Google Scholar 

  306. A. N. Guz, “Theory of delayed fracture of composite in compression,” Sov. Appl. Mech., 24, No. 5, 431–438 (1988).

    ADS  MathSciNet  MATH  Google Scholar 

  307. A. N. Guz, “Construction of a theory of failure of composites in triaxial and biaxial compression,” Sov. Appl. Mech., 25, No. 1, 29–33 (1989).

    ADS  MathSciNet  Google Scholar 

  308. A. N. Guz, “General case of the plane problem of the mechanics of fracture of solids in compression along cracks,” Sov. Appl. Mech., 25, No. 6, 548–552 (1989).

    ADS  MATH  Google Scholar 

  309. A. N. Guz, “On construction of mechanics of fracture of materials in compression along the cracks,” in: ICF7. Advance in Fracture Research, Vol. 6, Pergamon Press (1990), pp. 3881–3892.

  310. A. N. Guz, “Principles of the continual theory of plastic fracture of unidirectional fiber composite materials with metallic matrix under compression,” Sov. Appl. Mech., 26, No. 1, 1–8 (1990).

    ADS  MATH  Google Scholar 

  311. A. N. Guz, “Plastic failure of unidirectional fibrous composite material with metal matrix in compression,” in: Mechanical Identification of Composite, Elsevier, London–New York (1991), pp. 278–286.

    Google Scholar 

  312. A. N. Guz, “Continual theory of fracture of composite materials at bearing strain of end faces in compression,” in: Proc. of Conf. on Fracture of Engineering Materials and Structures, Elsevier, Singapore (1991), pp. 838–843.

  313. A. N. Guz, “Construction of a theory of the local instability of unidirectional fiber composites,” Int. Appl. Mech., 28, No. 1, 18–24 (1992).

    ADS  MATH  Google Scholar 

  314. A. N. Guz, “Fracture of fibrous composites at bearing strain in end faces in compression,” in: Proc. 2nd Int. Symp. on Composite Materials and Structures, Beijing, China (1992), pp. 232–236.

  315. A. N. Guz, “Construction of fracture mechanics for materials subjected to compression along cracks,” Int. Appl. Mech., 28, No. 10, 633–639 (1992).

    ADS  MATH  Google Scholar 

  316. A. N. Guz, “Fracture of fibrous composites at bearing strain in end faces in compression,” in: Proc. ICCM/9 Composites and Applications, Vol. VI, Madrid, July 12–16 (1993), pp. 613–618.

  317. A. N. Guz, “Continual theory of fracture of composite materials at bearing strain in end faces in compression,” in: Mechanisms and Mechanics of Composites Fracture, ASM Inter., Material Park (1993), pp. 201–207.

  318. A. N. Guz, “The study and analysis of non-classical problems of fracture and failure mechanics,” in: Abstracts of IUTAM Symp. of Nonlinear Analysis of Fracture, Cambridge, September 3–7 (1995), pp. 19–19.

  319. A. N. Guz, “Stability theory for unidirectional fiber reinforced composites,” Int. Appl. Mech., 32, No. 8, 577–586 (1996).

    ADS  MATH  Google Scholar 

  320. A. N. Guz, “On failure propagation in composite materials in compression (Three-dimensional continual theory),” in: Proc. ECF 11, September 3–6, Vol. III, Poitiers–Futuroscope, France (1996), pp. 1769–1774.

  321. A. N. Guz, “Non-classical problems of composite failure,” in: Proc. ICCST/1, June 18–20, Durban, South. Africa (1996), pp. 161–166.

  322. A. N. Guz, “On the development of brittle-fracture mechanics of materials with initial stresses,” Int. Appl. Mech., 32, No. 4, 316–323 (1996).

    ADS  MATH  Google Scholar 

  323. A. N. Guz, “Non-classical problems of composite failure,” in: Proc. ICF9 Advance in Fracture Research, Vol. 4, Sydney, Australia (1997), pp. 1911–1921.

  324. A. N. Guz, “The fracture theory of composite at bearing strain in end faces,” in: Proc. Conf. Composite Construction and Innovation, September 16–18, Innsbruck, Austria (1997), pp. 783–788.

  325. A. N. Guz, “Some modern problems of physical mechanics of fracture,” in: Fracture. A Topical Encyclopedia of Current Knowledge, Krieger Publ. Company, Malabar, Florida (1998), pp. 709–720.

  326. A. N. Guz, “Conditions of hyperbolicity and mechanics of failure of composites in compression,” ZAMM., 78, Sup. 1, 427–428 (1998).

  327. A. N. Guz, “On the singularities in problems of brittle fracture mechanics in case of initial (residual) stresses along the cracks,” in: Proc. 3rd Int. Conf. on Nonlinear Mechanics, Shanghai, China (1998), pp. 219–223.

  328. A. N. Guz, “Order of singularity in problems of the mechanics of brittle fracture of materials with initial stresses,” Int. Appl. Mech., 34, No. 2, 103–107 (1998).

    MATH  Google Scholar 

  329. A. N. Guz, Study and Analysis of Non-classical Problems of Fracture and Failure Mechanics and Corresponding Mechanisms, Institute of Mechanics, Lecture, HANOI (1998).

  330. A. N. Guz, “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 1. Problem statement and general relationships,” Int. Appl. Mech., 34, No. 12, 1175–1186 (1998).

    ADS  Google Scholar 

  331. A. N. Guz, “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 2. Cracks of normal separation (Mode I),” Int. Appl. Mech., 35, No. 1, 1–12 (1999).

    ADS  MATH  Google Scholar 

  332. A. N. Guz, “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 3. Transverse-shear (Mode II) and longitudinal-shear (Mode III) cracks,” Int. Appl. Mech., 35, No. 2, 109–119 (1999).

    ADS  MATH  Google Scholar 

  333. A. N. Guz, “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 4. Wedge problems,” Int. Appl. Mech., 35, No. 3, 225–232 (1999).

    ADS  Google Scholar 

  334. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer, Berlin–Hiedelberg–New York (1999).

    MATH  Google Scholar 

  335. A. N. Guz, “On the plastic failure of unidirectional fibrous composite materials with metal matrix in compression. Continuum approximation,” in: Proc. ICCE/6, June 27–July 3, Orlando, Florida, USA (1999), pp. 279–280.

  336. A. N. Guz, “Description and study of some nonclassical problems of fracture mechanics and related mechanisms,” Int. Appl. Mech., 36, No. 12, 1537–1564 (2000).

    ADS  Google Scholar 

  337. A. N. Guz, “Construction of the three-dimensional theory of stability of deformable bodies,” Int. Appl. Mech., 37, No. 1, 1–37 (2001).

    ADS  Google Scholar 

  338. A. N. Guz, “Elastic waves in bodies with initial (residual) stresses,” Int. Appl. Mech., 38, No. 1, 23–59 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  339. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 1. Problem formulation and basic relations,” Int. Appl. Mech., 38, No. 4, 423–431 (2002).

    ADS  Google Scholar 

  340. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 2. Exact solution. The case of unequal roots,” Int. Appl. Mech., 38, No. 5, 548–555 (2002).

    ADS  MATH  Google Scholar 

  341. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 3. Exact solution. The case of equal roots,” Int. Appl. Mech., 38, No. 6, 693–700 (2002).

    ADS  MATH  Google Scholar 

  342. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 4. Exact solution. The combined case of unequal and equal roots,” Int. Appl. Mech., 38, No. 7, 806–814 (2002).

    ADS  Google Scholar 

  343. A. N. Guz, “Comments on ‘Effects of prestress on crack-tip fields in elastic incompressible solids’,” Int. J. Solids Struct., 40, No. 5, 1333–1334 (2003).

    Google Scholar 

  344. A. N. Guz, “Establishing the fundamentals of the theory of stability of mine working,” Int. Appl. Mech., 39, No. 1, 20–48 (2003).

    ADS  Google Scholar 

  345. A. N. Guz, “On one two-level model in the mesomechanics of compression fracture of cracked composites,” Int. Appl. Mech., 39, No. 3, 274–285 (2003).

    ADS  MATH  Google Scholar 

  346. A. N. Guz, “On some nonclassical problems of fracture mechanics taking into account the stresses along cracks,” Int. Appl. Mech., 40, No. 8, 937–942 (2004).

    ADS  MATH  Google Scholar 

  347. A. N. Guz, “On study of nonclassical problems of fracture and failure mechanics and related mechanisms,” Annals of the European Academy of Sciences, 2006, 35–68 (2007).

    Google Scholar 

  348. A. N. Guz, “Three-dimensional theory of stability of a carbon nanotube in a matrix,” Int. Appl. Mech., 42, No. 1, 19–31 (2006).

    ADS  Google Scholar 

  349. A. N. Guz, “Pascal Medals Lecture (written presentation),” Int. Appl. Mech., 44, No. 1, 6–11 (2008).

    MATH  Google Scholar 

  350. A. N. Guz, “On study of nonclassical problems of fracture and failure mechanics and related mechanisms,” Int. Appl. Mech., 45, No. 1, 1–31 (2009).

    ADS  MATH  Google Scholar 

  351. A. N. Guz, “On physical incorrect results in fracture mechanics,” Int. Appl. Mech., 45, No. 10, 1041–1051 (2009).

    ADS  MATH  Google Scholar 

  352. A. N. Guz, “On the activity of the S. P. Timoshenko Institute of Mechanics in 1991–2011,” Int. Appl. Mech., 47, No. 6, 607–626 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  353. A. N. Guz, “Stability of elastic bodies under omnidirectional compression. Review,” Int. Appl. Mech., 48, No. 3, 241–293 (2012).

    ADS  MATH  Google Scholar 

  354. A. N. Guz and I. Yu. Babich, “Three-dimensional stability problems of composite materials and composite construction components,” Rozpr. Inz., 27, No. 4, 613–631 (1979).

    MATH  Google Scholar 

  355. A. N. Guz and V. N. Chekhov, “Linearized theory of folding in the interior of the Earth’s crust,” Sov. Appl. Mech., 11, No. 1, 1–10 (1975).

    ADS  Google Scholar 

  356. A. N. Guz and V. N. Chekhov, “Variational method of investigating the stability of laminar semiinfinite media,” Sov. Appl. Mech., 21, No. 7, 639–646 (1985).

    ADS  MATH  Google Scholar 

  357. A. N. Guz and V. N. Chekhov, “Investigation of surface instability of stratified bodies in three-dimensional formulation,” Sov. Appl. Mech., 26, No. 2, 107–125 (1990).

    ADS  MATH  Google Scholar 

  358. A. N. Guz and V. N. Chekhov, “Problems of folding in the earth’s stratified crust,” Int. Appl. Mech., 43, No. 2, 127–159 (2007).

    ADS  Google Scholar 

  359. A. N. Guz, V. N. Chekhov, and V. S. Stukotilov, “Effect of anisotropy in the physicomechanical properties of a material on the surface instability of layered semiinfinite media,” Int. Appl. Mech., 33, No. 2, 87–92 (1997).

    Google Scholar 

  360. A. N. Guz and M. A. Cherevko, “Fracture mechanics of unidirectional fibrous composites with metal matrix under compression,” Theor. Appl. Frac. Mech., 3, No. 2, 151–155 (1985).

    Google Scholar 

  361. A. N. Guz and M. A. Cherevko, “Stability of a biperiodic system of fibers in a matrix with finite deformations,” Sov. Appl. Mech., 22, No. 6, 514–518 (1986).

    ADS  Google Scholar 

  362. A. N. Guz and V. A. Dekret, “Interaction of two parallel short fibers in the matrix at loss of stability,” Comp. Model. Eng. Scie., 13, No. 3, 165–170 (2006).

    Google Scholar 

  363. A. N. Guz and V. A. Dekret, “On two models in the three-dimensional theory of stability of composites,” Int. Appl. Mech., 44, No. 8, 839–854 (2008).

    ADS  Google Scholar 

  364. A. N. Guz and V. A. Dekret, “Stability loss in nanotube reinforced composites,” Comp. Model. Eng. Sci., 49, No. 1, 69–80 (2009).

    MATH  Google Scholar 

  365. A. N. Guz and V. A. Dekret, “Stability problem of composite material reinforced by periodic row of short fibers,” Comp. Model. Eng. Sci., 42, No. 3, 179–186 (2009).

    Google Scholar 

  366. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Solution of plane problems of the three-dimensional stability of a ribbon-reinforced composite,” Int. Appl. Mech., 36, No. 10, 1317–1328 (2000).

    ADS  MATH  Google Scholar 

  367. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Two-dimensional stability problem for interacting short fibers in a composite: in-line arrangement,” Int. Appl. Mech., 40, No. 9, 994–1001 (2004).

    ADS  Google Scholar 

  368. A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Planar stability problem of composite weakly reinforced by short fibers,” Mech. Adv. Mater. Struct., No. 12, 313–317 (2005).

    Google Scholar 

  369. A. N. Guz, M. V. Dovzhik, and V. M. Nazarenko, “Fracture of a material compressed along a crack located at a short distance from the free surface,” Int. Appl. Mech., 47, No. 6, 627–635 (2011).

    ADS  MATH  Google Scholar 

  370. A. N. Guz and M. Sh. Dyshel’, “Fracture of cylindrical shells with cracks in tension,” Theor. Appl. Fract. Mech., No. 4, 123–126 (1985).

    Google Scholar 

  371. A. N. Guz and M. Sh. Dyshel’, “Fracture and stability of notched thin-walled bodies in tension (Survey),” Sov. Appl. Mech., 26, No. 11, 1023–1040 (1990).

    ADS  MATH  Google Scholar 

  372. A. N. Guz, M. Sh. Dyshel’, G. G. Kuliev, and O. B. Milovanova, “Fracture and local instability of thin-walled bodies with notches,” Sov. Appl. Mech., 17, No. 8, 707–721 (1981).

    ADS  MATH  Google Scholar 

  373. A. N. Guz, M. Sh. Dyshel’, and V. M. Nazarenko, “Fracture and stability of materials and structural members with cracks: approaches and results,” Int. Appl. Mech., 40, No. 12, 1323–1359 (2004).

    ADS  Google Scholar 

  374. A. N. Guz and I. A. Guz, “Substantiation of a continuum theory of the fracture of laminated composite in compression,” Sov. Appl. Mech., 24, No. 7, 648–657 (1988).

    ADS  MATH  Google Scholar 

  375. A. N. Guz and I. A. Guz, “Foundation for the continual theory of fracture during compression of laminar composites with a metal matrix,” Sov. Appl. Mech., 24, No. 11, 1041–1047 (1988).

    ADS  MATH  Google Scholar 

  376. A. N. Guz and I. A. Guz, “On the theory of stability of laminated composites,” Int. Appl. Mech., 35, No. 4, 323–329 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  377. A. N. Guz and I. A. Guz, “Analytical solution of stability problem for two composite half-plane compressed along interfacial cracks,” Composites. Part B., 31, No. 5, 405–418 (2000).

    Google Scholar 

  378. A. N. Guz and I. A. Guz, “The stability of the interface between two bodies compressed along interface cracks. 1. Exact solution for the case of unequal roots,” Int. Appl. Mech., 36, No. 4, 482–491 (2000).

    ADS  MATH  Google Scholar 

  379. A. N. Guz and I. A. Guz, “The stability of the interface between two bodies compressed along interface cracks. 1. Exact solution for the case of equal roots,” Int. Appl. Mech., 36, No. 5, 615–622 (2000).

    ADS  MATH  Google Scholar 

  380. A. N. Guz and I. A. Guz, “The stability of the interface between two bodies compressed along interface cracks. 3. Exact solution for the case of equal and unequal roots,” Int. Appl. Mech., 36, No. 6, 759–768 (2000).

    ADS  MATH  Google Scholar 

  381. A. N. Guz and I. A. Guz, “On publications on the brittle fracture mechanics of prestressed materials,” Int. Appl. Mech., 39, No. 7, 797–801 (2003).

    ADS  Google Scholar 

  382. A. N. Guz and I. A. Guz, “Mixed plane problems of linearized solids mechanics. Exact solutions,” Int. Appl. Mech., 40, No. 1, 1–29 (2004).

    ADS  MATH  Google Scholar 

  383. A. N. Guz and I. A. Guz, “On models in the theory of stability of multi-walled carbon nanotubes,” Int. Appl. Mech., 42, No. 6, 617–628 (2006).

    ADS  Google Scholar 

  384. A. N. Guz, I. A. Guz, A. V. Men’shikov, and V. A. Men’shikov, “Penny-shaped crack at the interface between elastic half-space under the action of a shear wave,” Int. Appl. Mech., 45, No. 5, 534–539 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  385. A. N. Guz and Yu. I. Khoma, “Stability of an infinite solid with a circular cylindrical crack under compression using the Treloar potential,” Theor. Appl. Fract. Mech., 39, No. 3, 276–280 (2002).

    Google Scholar 

  386. A. N. Guz and Yu. I. Khoma, “Integral formulation for a circular cylindrical cavity in infinite solid and finite length coaxial cylindrical crack compressed axially,” Theor. Appl. Fract. Mech., 45, No. 2, 204–211 (2006).

    Google Scholar 

  387. A. N. Guz, Yu. I. Khoma, and V. M. Nazarenko, “On fracture of an infinite elastic body in compression along a cylindrical defect,” in: Proc. ICF 9 Advance in Fracture Research, Vol. 4, Sydney, Australia (1997), pp. 2047–2054.

  388. A. N. Guz and Yu.V. Klyuchnikov, “Three-dimensional static problem for an elliptical crack in an elastic body with initial stress,” Sov. Appl. Mech., 20, No. 10, 898–907 (1984).

    ADS  MATH  Google Scholar 

  389. A. N. Guz, V. L. Knyukh, and V. M. Nazarenko, “Three-dimensional axisymmetric problem of fracture in material with two discoidal cracks under compression along latter,” Sov. Appl. Mech., 20, No. 11, 1003–1012 (1984).

    ADS  MATH  Google Scholar 

  390. A. N. Guz, V. L. Knyukh, and V. M. Nazarenko, “Cleavage of composite materials in compression along internal and surface macrocracks,” Sov. Appl. Mech., 22, No. 11, 1047–1051 (1986).

    ADS  Google Scholar 

  391. A. N. Guz, V. L. Knyukh, and V. M. Nazarenko, “Fracture of ductile materials in compression along two parallel disk-shaped cracks,” Sov. Appl. Mech., 24, No. 2, 112–117 (1988).

    ADS  MATH  Google Scholar 

  392. A. N. Guz, V. L. Knyukh, and V. M. Nazarenko, “Compressive failure of material with two parallel cracks: small and large deformation,” Theor. Appl. Fract. Mech., 11, No. 3, 213–223 (1989).

    Google Scholar 

  393. A. N. Guz, V. P. Korzh, and V. N. Chekhov, “Instability of layered bodies during compression taking into account the action of disturbated surface loads,” Sov. Appl. Mech., 25, No. 5, 435–442 (1989).

    ADS  MATH  Google Scholar 

  394. A. N. Guz, V. P. Korzh, and V. N. Chekhov, “Surface instability of a laminar medium connected with a homogeneous half-space under multilateral compression,” Sov. Appl. Mech., 26, No. 3, 215–222 (1990).

    ADS  MATH  Google Scholar 

  395. A. N. Guz, V. P. Korzh, and V. N. Chekhov, “Stability of a laminar half-plane of regular structure under uniform compression,” Sov. Appl. Mech., 27, No. 8, 744–749 (1991).

    ADS  MATH  Google Scholar 

  396. A. N. Guz, A. A. Kritsuk, and R. F. Emel’yanov, “Character of the failure of unidirectional glass-reinforced plastic in compression,” Sov. Appl. Mech., 5, No. 9, 997–999 (1969).

    ADS  Google Scholar 

  397. A. N. Guz, G. G. Kuliev, and I. A. Tsurpal, “Theory of the rupture of thin bodies with cracks,” Sov. Appl. Mech., 11, No. 5, 485–487 (1975).

    ADS  Google Scholar 

  398. A. N. Guz, G. G. Kuliev, and I. A. Tsurpal, “On failure of brittle materials because of grippling near cracks,” in: Abstracts 14th IUTAM Congr., Delft (1976), p. 90.

  399. A. N. Guz, G. G. Kuliev, and I. A. Tsurpal, “On fracture of brittle materials from loss of stability near crack,” Eng. Fract. Mech., 10, No. 2, 401–408 (1978).

    Google Scholar 

  400. A. N. Guz and Yu. N. Lapusta, “Stability of a fiber near a free surface,” Sov. Appl. Mech., 22, No. 8, 711–718 (1986).

    ADS  MATH  Google Scholar 

  401. A. N. Guz and Yu. N. Lapusta, “Stability of a fiber near a free cylindrical surface,” Sov. Appl. Mech., 24, No. 10, 939–944 (1988).

    ADS  MATH  Google Scholar 

  402. A. N. Guz and Yu. N. Lapusta, “Three-dimensional problem on the stability of a row of fibers perpendicular to the free boundary of a matrix,” Int. Appl. Mech., 30, No. 12, 919–926 (1994).

    ADS  MATH  Google Scholar 

  403. A. N. Guz and Yu. N. Lapusta, “Three-dimensional problems of the near-surface instability of fiber composites in compression (Model of a piecewise-uniform medium) (Survey),” Int. Appl. Mech., 35, No. 7, 641–670 (1999).

    ADS  MATH  Google Scholar 

  404. A. N. Guz, Yu. N. Lapusta, and Yu. A. Mamzenko, “Stability of a two fibers in an elasto-plastic matrix under compression,” Int. Appl. Mech., 34, No. 5, 405–413 (1998).

    Google Scholar 

  405. A. N. Guz, Yu. N. Lapusta, and A. N. Samborskaya, “A micromechanics solution of a 3D internal instability problem for a fiber series on an infinite matrix,” Int. J. Fract., 116, No. 3, L55–L60 (2002).

    Google Scholar 

  406. A. N. Guz, Yu. N. Lapusta, and A. N. Samborskaya, “3D model and estimation of fiber interaction effects during internal instability in non-linear composites,” Int. J. Fract., 134, No. 3-4, L45–L51 (2005).

    MATH  Google Scholar 

  407. A. N. Guz, A. V. Menshikov, and V. V. Zozulya, “Surface contact of elliptical crack under normally incident tension-compression wave,” Theor. Appl. Fract. Mech., 40, No. 3, 285–291 (2003).

    Google Scholar 

  408. A. N. Guz, A. V. Menshikov, V. V. Zozulya, and I. A. Guz, “Contact problem for the plane elliptical crack under normally incident shear wave,” Comp. Model. Eng. Sci., 17, No. 3, 205–214 (2007).

    MATH  Google Scholar 

  409. A. N. Guz and D. A. Musaev, “Fracture of a unidirectional ribbon composite with elasto-plastic matrix in compression,” Sov. Appl. Mech., 26, No. 5, 425–429 (1990).

    ADS  MATH  Google Scholar 

  410. A. N. Guz, D. A. Musaev, and Ch. A. Yusubov, “Stability of two noncircular cylinder in an elastic matrix with small subcritical strains,” Sov. Appl. Mech., 25, No. 11, 1059–1064 (1989).

    ADS  MATH  Google Scholar 

  411. A. N. Guz and V. M. Nazarenko, “Symmetric failure of the halfspace with penny-shaped crack in compression,” Theor. Appl. Fract. Mech., 3, No. 3, 233–245 (1985).

    Google Scholar 

  412. A. N. Guz and V. M. Nazarenko, “Fracture of a material in compression along a periodic system of parallel circular cracks,” Sov. Appl. Mech., 23, No. 4, 371–377 (1987).

    ADS  Google Scholar 

  413. A. N. Guz and V. M. Nazarenko, “Fracture mechanics of material in compression along cracks (Review). Highly elastic materials,” Sov. Appl. Mech., 25, No. 9, 851–876 (1989).

    ADS  MATH  Google Scholar 

  414. A. N. Guz and V. M. Nazarenko, “Fracture mechanics of materials under compression along cracks (survey). Structural materials,” Sov. Appl. Mech., 25, No. 10, 959–972 (1989).

    ADS  MATH  Google Scholar 

  415. A. N. Guz, V. M. Nazarenko, and V. L. Bogdanov, “Fracture under initial stresses acting along cracks: Approach, concept and results,” Theor. Appl. Fract. Mech., 48, 285–303 (2007).

    Google Scholar 

  416. A. N. Guz, V. M. Nazarenko, and V. L. Bogdanov, “Combined analysis of fracture under stress acting along cracks,” Archive Appl. Mech., 83, No. 9, 1273–1293 (2013).

    ADS  MATH  Google Scholar 

  417. A. N. Guz, V. M. Nazarenko, and Yu. I. Khoma, “Failure of an infinite compressible composite containing a finite cylindrical crack in axial compression,” Int. Appl. Mech., 31, No. 9, 695–703 (1995).

    ADS  MATH  Google Scholar 

  418. A. N. Guz, V. M. Nazarenko, and Yu. I. Khoma, “Fracture of an infinite incompressible hyperelastic material under compression along a cylindrical crack,” Int. Appl. Mech., 32, No. 5, 325–331 (1996).

    ADS  MATH  Google Scholar 

  419. A. N. Guz, V. M. Nazarenko, and S. M. Nazarenko, “Fracture of composites under compression along periodically placed parallel circular stratifications,” Sov. Appl. Mech., 25, No. 3, 215–121 (1989).

    ADS  MATH  Google Scholar 

  420. A. N. Guz, V. M. Nazarenko, and V. A. Nikonov, “Torsion of a pre-stresses halfspace with a disc-shaped crack at the surface,” Sov. Appl. Mech., 27, No. 10, 948–954 (1991).

    ADS  MATH  Google Scholar 

  421. A. N. Guz, V. M. Nazarenko, and I. P. Starodubtsev, “Planar problem of failure of structural materials in compression along two parallel cracks,” Sov. Appl. Mech., 27, No. 4, 352–360 (1991).

    ADS  MATH  Google Scholar 

  422. A. N. Guz, V. M. Nazarenko, and I. P. Starodubtsev, “On problems of fracture of materials in compression along two internal parallel cracks,” Appl. Math. Mech., 18, No. 6, 517–528 (1997).

    MATH  Google Scholar 

  423. A. N. Guz and J. J. Rushchitskii, Short Introduction to Mechanics of Nanocomposites, Scientific&Academic Publishing Co., LTD, USA (2013).

    Google Scholar 

  424. A. N. Guz, J. J. Rushchitskii, and I. A. Guz, “Establishing fundamentals of the mechanics of nanocomposites,” Int. Appl. Mech., 43, No. 3, 247–271 (2007).

    ADS  Google Scholar 

  425. A. N. Guz and A. N. Samborskaya, “General stability problem of a series of fibers in an elastic matrix,” Sov. Appl. Mech., 27, No. 3, 223–230 (1991).

    ADS  MATH  Google Scholar 

  426. A. N. Guz and A. N. Sporykhin, “Three-dimensional theory of inelastic stability (General questions),” Sov. Appl. Mech., 18, No. 7, 581–596 (1982).

    ADS  MathSciNet  MATH  Google Scholar 

  427. A. N. Guz and A. N. Sporykhin, “Three-dimensional theory of inelastic stability. Specific results,” Sov. Appl. Mech., 18, No. 8, 671–692 (1982).

    ADS  MATH  Google Scholar 

  428. A. N. Guz, E. A. Tkachenko, and V. N. Chekhov, “Stability of layered antifriction coating,” Int. Appl. Mech., 32, No. 9, 669–676 (1996).

    ADS  MATH  Google Scholar 

  429. A. N. Guz, E. A. Tkachenko, V. N. Chekhov, and V. S. Stukotilov, “Stability of multilayer antifriction coating for small subcritical strains,” Int. Appl. Mech., 32, No. 10, 772–779 (1996).

    ADS  MATH  Google Scholar 

  430. A. N. Guz and V. V. Zozulya, “Contact interaction between crack edges under dynamic load,” Int. Appl. Mech., 28, No. 7, 407–417 (1992).

    ADS  MATH  Google Scholar 

  431. A. N. Guz and V. V. Zozulya, “Problems of dynamic fracture mechanics without contact of the crack faces,” Int. Appl. Mech., 30, No. 10, 735–759 (1994).

    ADS  Google Scholar 

  432. A. N. Guz and V. V. Zozulya, “Problems of dynamic fracture mechanics without allowance for contact of the crack edges,” Int. Appl. Mech., 31, No. 1, 1–31 (1995).

    ADS  MATH  Google Scholar 

  433. A. N. Guz and V. V. Zozulya, “Fracture dynamic with allowance for a crack edges contact interaction,” Int. J. Nonlin. Sci. Numer. Simul., 2, No. 3, 173–233 (2001).

    MathSciNet  MATH  Google Scholar 

  434. A. N. Guz and V. V. Zozulya, “Elastodynamic unilateral contact problem with friction for bodies with cracks,” Int. Appl. Mech., 38, No. 8, 895–932 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  435. A. N. Guz and V. V. Zozulya, “Investigation of the effect of frictional contact in III Mode crack under action of SH-wave harmonic load,” Comp. Model. Eng. Sci., 22, No. 2, 119–128 (2007).

    MathSciNet  MATH  Google Scholar 

  436. A. N. Guz and V. V. Zozulya, “On dynamical fracture mechanics in the case of polyharmonic loading by P-waves,” Int. Appl. Mech., 45, No. 9, 1033–1036 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  437. A. N. Guz and V. V. Zozulya, “On dynamical fracture mechanics in the case of polyharmonic loading by SH-waves,” Int. Appl. Mech., 46, No. 1, 113–116 (2010).

    ADS  MATH  Google Scholar 

  438. A. N. Guz, V. V. Zozulya, and A. V. Menshikov, “Three-dimensional dynamic contact problem for an elliptic crack interacting with normally incident harmonic compression-expansion wave,” Int. Appl. Mech., 39, No. 12, 1425–1428 (2003).

    ADS  Google Scholar 

  439. A. N. Guz, V. V. Zozulya, and A. V. Menshikov, “General spatial dynamic problem for an elliptic crack under the action of a normal shear wave, with consideration for the contact interaction of the crack faces,” Int. Appl. Mech., 40, No. 2, 156–159 (2004).

    ADS  Google Scholar 

  440. I. A. Guz, “Spatial nonaxisymmetric problems of the theory of stability of laminar highly elastic composite materials,” Sov. Appl. Mech., 25, No. 11, 1080–1085 (1989).

    ADS  MATH  Google Scholar 

  441. I. A. Guz, “Three-dimensional nonaxisymmetric problems of the theory of stability of composite materials with metallic matrix,” Sov. Appl. Mech., 25, No. 12, 1196–1200 (1989).

    ADS  MATH  Google Scholar 

  442. I. A. Guz, “Continuum approximation in three-dimensional nonaxisymmetyric problems of the stability theory of laminar compressible materials,” Sov. Appl. Mech., 26, No. 3, 233–236 (1990).

    ADS  MATH  Google Scholar 

  443. I. A. Guz, “Asymptotic accuracy of the continual theory of the internal instability of laminar composites with an incompressible matrix,” Sov. Appl. Mech., 27, No. 7, 680–684 (1991).

    ADS  MATH  Google Scholar 

  444. I. A. Guz, “Estimation of critical loading parameters for composites with imperfect layer contact,” Int. Appl. Mech., 28, No. 5, 291–295 (1992).

    ADS  Google Scholar 

  445. I. A. Guz, “Investigation of local form of stability loss in laminated composites (three-dimensional problem),” in: Proc. ICCM/9 Composites. Properties and Applications, Vol. VI, Madrid, July 12–16 (1993), pp. 377–383.

  446. I. A. Guz, “On the local stability loss in laminated composite structures,” in: Proc. 6th Eur. Conf. on Comp. Mat. Development in the Science and Technology of Composite Materials, September 20–24, 1993, Bordeaux, France–Woodhead Publ. Ltd. (1993), pp. 263–268.

  447. I. A. Guz, “Computational schemes in three-dimensional stability theory (the piecewise-homogeneous model of a medium) for composites with cracks between layers,” Int. Appl. Mech., 29, No. 4, 274–280 (1993).

    ADS  Google Scholar 

  448. I. A. Guz, “The strength of a composite formed by longitudinal–transverse stacking of orthotropic layers with a crack at the boundary,” Int. Appl. Mech., 29, No. 11, 921–924 (1993).

    ADS  Google Scholar 

  449. I. A. Guz, “Investigation of the stability of a composite in compression along two parallel structural cracks at the layer interface,” Int. Appl. Mech., 30, No. 11, 841–847 (1994).

    ADS  Google Scholar 

  450. I. A. Guz, “On one mechanism of fracture of composites in compression along interlayer cracks,” in: Proc. Int. Conf. on Design and Manufactoring Using Composites, August 10–12, 1994, Montreal, Canada (1994), pp. 404–412.

  451. I. A. Guz, “Problems of the stability of composite materials in compression along interlaminar cracks: periodic system of parallel macrocracks,” Int. Appl. Mech., 31, No. 7, 551–557 (1995).

    ADS  Google Scholar 

  452. I. A. Guz, “Stability of composites in compression along cracks,” in: Proc. Enercomp 95, May 8–10, 1995, Montreal, Canada. Technomic Publ. Co., Lancaster–Basel (1995), pp. 163–170.

  453. I. A. Guz, “Failure of layered composites with interface cracks,” in: Proc. 18th Int. Conf. Reinforced Plastics 95, Karlovy Vary, 16–18.05.1995, Czech. Rep. (1995), pp. 175–182.

  454. I. A. Guz, “Stability and failure of layered composites with interface cracks,” in: Proc. Int. Conf. on Comp. Eng. Sci. Computational Mechanics 95, July 30–August 3, 1995, Vols. 1–2, Springer–Verlag, Hawaii, USA (1995), pp. 2317–2322.

  455. I. A. Guz, “Computer aided investigations of composites with various interlaminar cracks,” ZAMM., 76, Sup. No. 5, 189–190 (1996).

  456. I. A. Guz, “Stability loss of composite materials with cracks between compressible elastic layers,” in: Proc. ECCM–7, May 14–16, 1996, London, UK, Vols. 1–2, Woodhead Publ. Ltd. (1996), pp. 259–264.

  457. I. A. Guz, “Composite structures in compression along parallel interfacial cracks,” in: Proc. ICCST/1, June 18–20, 1996, Durban, South Africa (1996), pp. 167–172.

  458. I. A. Guz, “Analysis of a failure mechanism in compression of composites with various kinds of interface adhesion,” in: Proc. EUROMAT 97, April 21–23, 1997, The Netherlands, Vol. 2 (1997), pp. 375–380.

  459. I. A. Guz, “Modelling of fracture of composites in compression along layers,” in: Proc. 3rd Int. Conf., September 3–5, 1997, Dublin, Ireland, A.A. Balkema, Rotterdam (1997), pp. 523–530.

  460. I. A. Guz, “Metal matrix composites in compression. Substantiation of the bounds,” in: Proc. 5th Int. Conf. on Automated Composites, September 4–5, 1997, Glasgow, UK, Institute of Materials, London,UK(1997), pp. 387–393.

  461. I. A. Guz, “Composites with various interfacial defects. Bounds for critical parameters of instability in compression,” in: Proc. DURACOSYS 97, September 15–17, 1997, Blacksburg, USA (1997), pp. 7.51–7.54.

  462. I. A. Guz, “Instability in compression as a failure mechanism for layered composites with parallel interfacial cracks,” in: Proc. ICF 9 Advances in Fracture Research, Vol. 2, Sydney, Australia (1997), pp. 1053–1060.

  463. I. A. Guz, “On one fracture mechanism for composites with parallel interfacial cracks,” in: Proc. 4th Int. Conf. on Deformation and Fracture of Composites, March 24–26, 1997, Manchester, UK, Institute of Materials, London (1997), pp. 579–588.

  464. I. A. Guz, “On calculation of critical strains for periodical array of parallel interfacial cracks in layered materials,” in: Proc. 6th EPMESC Conf., August 4–7, 1997, Guang-Zhou, China (1997), pp. 375–380.

  465. I. A. Guz, “On fracture of brittle matrix composites: Compression along parallel interfacial cracks,” in: Proc. 5th Int. Symp., October 13–15, 1997, Warsaw, Poland, Woodhead Publ. Ltd., Cambridge (1997), pp. 391–400.

  466. I. A. Guz, “Numerical investigation on one mechanism of fracture for rock with parallel interlaminar cracks,” in: Advances in Comp. Eng. Sciences, Tech. Science Press, Forsyth, USA (1997), pp. 956–961.

  467. I. A. Guz, “Composites with interlaminar imperfections: Substantiation on the bounds for failure parameters in compression,” Composites. Part B., 29, No. 4, 343–350 (1998).

    Google Scholar 

  468. I. A. Guz, “Analysis of stability and failure in compression of composites with various kinds of interfacial defects,” in: Proc. 6th Asia–Pacific Conf. on Struct. Eng. Construction, January 14–16, Taipei, Taiwan, Vol. 2 (1998), pp. 1337–1342.

  469. I. A. Guz, “On asymptotic accuracy of the theory of plastic fracture in compression for layered materials,” in: Nonlocal Aspects in Solid Mechanics, EUROMECH Coll. 378, April 20–22, 1998, Mulhouse, France (1998), pp. 118–123.

  470. I. A. Guz, “Composites with various kinds of interfacial adhesion: Compression along layers,” in: Proc. ECCM-8, June 3–6, 1998, Naples, Italy, Vols. 1–4, Woodhead Publ. Ltd., Vol. 4, (1998), pp. 677–683.

  471. I. A. Guz, “On continuum approximation in compressive fracture theory for metal matrix composites: Asymptotic accuracy,” in: Proc. ICCST/2, June 9–11, 1998, Durban, South Africa (1998), pp. 501–506.

  472. I. A. Guz, “Investigation of accuracy of continuum fracture theory for piecewise-homogeneous medium,” in: Proc. ICNo. M-III, August 17–20, 1998, Shanghai Univ. Press, Shanghai, China (1998), pp. 224–227.

  473. I. A. Guz, “On two approaches to compressive fracture problems,” in: Proc. 12th Eur. Conf. on Fracture, September 14–16, 1998, Sheffield, UK, Vols. 1–3, EMAS Publ., Vol. 3 (1998), pp. 1447–1452.

  474. I. A. Guz, “Asymptotic analysis of fracture theory for layered rocks in compression,” in: Modelling and Simulation Based Engineering, Vols. 1–2, Tech. Science Press, Palmdale, USA, Vol. 1 (1998), pp. 375–380.

  475. I. A. Guz, “On calculation of accuracy for continuum fracture theory of metal matrix composites in compression,” in: Proc. ICAC 96, December 15–18, 1998, Hurghada, Egypt (1998), pp. 757–764.

  476. I. A. Guz, “On modelling of a failure mechanism for layered composites with interfacial cracks,” ZAMM., 78, Sup. No. 1, S429–S430 (1998).

  477. I. A. Guz, “On estimation of critical loads for rocks in compression: 3-D approach,” in: Proc. ARCOM’99, December 15–17, 1999, Singapore, Vols. 1–2, Elsevier, Vol. 2 (1999), pp. 847–852.

  478. I. A. Guz, “Bounds for critical parameters in the stability theory of piecewise-homogeneous media: Laminated rocks,” in: Proc. SASAM 2000, January 11–13, 2000, Durban, South Africa (2000), pp. 479–484.

  479. I. A. Guz, “Compressive behaviour of metal matrix composites: Accuracy of homogenezation,” ZAMM., 80, Sup. No. 2, S473–S474 (2000).

  480. I. A. Guz, “The effect of the multi-axiality of compressive loading on the accuracy of a continuum model for layered materials,” Int. J. Solids Struct., 42, 439–453 (2005).

    MATH  Google Scholar 

  481. I. A. Guz and H. W. Chandler, “Bifurcation problem for ceramics compressed along interlaminar microcracks,” in: Abstracts 5th Int. Congr. on Indus. and Appl. Math., ICIAM 2003, Sydney, Australia, July 7–11, 2003, Univ. of Techn., Sydney, Australia (2003), p. 311.

  482. I. A. Guz and A. N. Guz, “Stability of two different half-planes in compression along interfacial cracks: Analytical solutions,” Int. Appl. Mech., 37, No. 7, 906–912 (2001).

    ADS  MATH  Google Scholar 

  483. I. A. Guz and K. P. Herrmann, “On the lower bounds for critical loads under large deformations in non-linear hyperelastic composites with imperfect interlaminar adhesion,” Eur. J. Mech., A/Solids, 22, No. 6, 837–849 (2003).

    MATH  Google Scholar 

  484. I. A. Guz and Yu. V. Kokhanenko, “Stability of laminated composite material in compression along microcrack,” Int. Appl. Mech., 29, No. 9, 702–708 (1993).

    ADS  Google Scholar 

  485. I. A. Guz and C. Soutis, “Continuum fracture theory for layered materials: Investigation of accuracy,” ZAMM., 35, No. 5, 462–468 (1999).

    MATH  Google Scholar 

  486. I. A. Guz and C. Soutis, “Critical strains in layered composites with interfacial defects loaded in uniaxial or biaxial compression,” Plastics, Rubber and Composites, 29, No. 9, 489–495 (2000).

    Google Scholar 

  487. I. A. Guz and C. Soutis, “A 3-D stability theory applied to layered rocks undergoing finite deformations in biaxial compression,” Eur. J. Mech., A/Solids, 20, No. 1, 139–153 (2001).

    ADS  MATH  Google Scholar 

  488. I. A. Guz and C. Soutis, “Accuracy of a continuum fracture theory for non-linear composite materials under large deformations in biaxial compression,” ZAMM., 81, Sup. No. 4, S849–S850 (2001).

  489. I. A. Guz and C. Soutis, “Compressive fracture of non-linear composites undergoing large deformations,” Int. J. Solids Struc., 38, No. 21, 3759–3770 (2001).

    MATH  Google Scholar 

  490. I. A. Guz and C. Soutis, “Predicting fracture of composites,” in: Multi-scale Modelling of Composite Material Systems. The Art of Predictive Damage Modelling, Woodhead Publ. Ltd, Cambridge, England (2005), pp. 278–302.

    Google Scholar 

  491. I. A. Guz and C. Soutis, “Compressive strength of laminated composites: on application of the continuum fracture theory,” in: Fracture and Damage of Composites, WIT Press, Cambridge, England (2006), pp. 1–24.

    Google Scholar 

  492. H. Katz and I. V. Milevski, Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold Company, New York (1978).

    Google Scholar 

  493. T. Hayashi, “On the shear instability of structures caused by compressive loads,” in: Proc. 16th Japan Congr. Appl. Mech. (1966), pp. 149–157.

  494. T. Hayashi, “On the shear instability of structures caused by compressive loads,” AIAA Paper, No. 65, 770 (1970).

  495. N. J. Hoff, “Buckling and stability,” J. Royal Aeronautical Society, 58, No. 1, 1–11 (1954).

    Google Scholar 

  496. G. R. Irwin, “Analysis of stresses and strains near end a crack traversing a plate,” J. Appl. Mech., 24, No. 3, 361–364 (1957).

    Google Scholar 

  497. G. R. Irwin, “Fracture,” in: Handbuch der Physik, Berlin, Bd. 6 (1958), pp. 551–590.

  498. Ch. Jochum and J.-C. Grandidier, “Microbuckling elastic modeling approach of a single carbon fiber embedded in an epoxy matrix,” Compos. Sci. Technol., 64, 2441–2449 (2004).

    Google Scholar 

  499. R. Kappus, “Zur Elastizitatstheorie endlicher Verschiebungen,” ZAMM, 19, No. 5, 271–285 (1939).

    ADS  MathSciNet  MATH  Google Scholar 

  500. R. Kappus, “Zur Elastizitatstheorie endlicher Verschiebungen,” ZAMM, 19, No. 6, 344–361 (1939).

    ADS  MathSciNet  MATH  Google Scholar 

  501. Yu. V. Kluchnikov, “Three-dimensional static problem for an external disk-shaped crack in an elastic body with initial stresses,” Sov. Appl. Mech., 20, No. 2, 118–122 (1984).

    ADS  Google Scholar 

  502. V. L. Knyukh, “Fracture of a material with two disk-shaped cracks in the case of axisymmetric deformation in compression along the cracks,” Sov. Appl. Mech., 21, No. 3, 221–225 (1985).

    ADS  MATH  Google Scholar 

  503. Yu. V. Kokhanenko, “Numerical solution of problems of the theory of elasticity and the three-dimensional stability of piecewise-homogeneous media,” Sov. Appl. Mech., 22, No. 11, 1052–1058 (1986).

    ADS  MATH  Google Scholar 

  504. Yu. V. Kokhanenko, “Numerical study of the three-dimensional stability problems for laminated and ribbon-reinforced composites,” Int. Appl. Mech., 37, No. 3, 317–340 (2001).

    ADS  MathSciNet  Google Scholar 

  505. V. P. Korzh and V. N. Chekhov, “Surface instability of laminated bodies of regular structure under combination loading,” Sov. Appl. Mech., 27, No. 5, 443–449 (1991).

    ADS  MATH  Google Scholar 

  506. V. P. Korzh and V. N. Chekhov, “Combined analysis of internal and surface instability in laminar bodies of regular structure,” Sov. Appl. Mech., 27, No. 11, 1058–1063 (1991).

    ADS  MATH  Google Scholar 

  507. V. P. Korzh and V. N. Chekhov, “Surface instability of laminated materials of regular structure under triaxial compression,” Int. Appl. Mech., 38, No. 9, 1119–1124 (2002).

    ADS  MATH  Google Scholar 

  508. G. G. Kuliev, “Theory of stability of bodies with a crack in the case of plane deformation,” Sov. Appl. Mech., 13, No. 12, 1235–1239 (1977).

    ADS  MATH  Google Scholar 

  509. G. G. Kuliev, “Effect of the form of external loads on the loss of stability of the state of equilibrium of half-space near a central vertical crack,” Sov. Appl. Mech., 15, No. 10, 1001–1002 (1979).

    ADS  Google Scholar 

  510. G. G. Kuliev, “Problems of stability loss of half-space with a crack of infinite depth,” Sov. Appl. Mech., 14, No. 8, 815–819 (1978).

    ADS  MATH  Google Scholar 

  511. M. Kurashide, “Circular crack problem for initially stressed neo-Hookean solid,” ZAMM., 49, No. 2, 671–678 (1969).

    ADS  Google Scholar 

  512. Yu. N. Lapusta, “Fiber stability in a semiinfinite elastic matrix with highly elastic deformation,” Sov. Appl. Mech., 23, No. 8, 718–721 (1987).

    ADS  Google Scholar 

  513. Yu. N. Lapusta, “Stability of fibers near the free surface of a cavity during finite precritical strains,” Sov. Appl. Mech., 24, No. 5, 453–457 (1988).

    ADS  MATH  Google Scholar 

  514. Yu. N. Lapusta, “Surface instability of two fibers in a matrix,” Sov. Appl. Mech., 26, No. 8, 739–744 (1990).

    ADS  MATH  Google Scholar 

  515. Yu. N. Lapusta, “Stability of a fiber in semi-infinite elastic matrix with sliding contact at the interface,” Sov. Appl. Mech., 26, No. 10, 924–928 (1990).

    ADS  MATH  Google Scholar 

  516. Yu. N. Lapusta, “Stability of a periodic series of fibers in a semi-infinite matrix,” Sov. Appl. Mech., 27, No. 2, 124–130 (1991).

    ADS  MATH  Google Scholar 

  517. Yu. N. Lapusta, “Stability of a row of fibers near the free plane border in matrix in axial compression,” in: Abstracts 1st European Solid Mechanics Conf., Munich, FRG, September 9–13 (1991), pp. 131–132.

  518. Yu. N. Lapusta, “Stability of a fiber in an elastoplastic matrix near a free cylindrical surface,” Int. Appl. Mech., 28, No. 1, 33–41 (1992).

    ADS  MATH  Google Scholar 

  519. Yu. N. Lapusta, “Near-the-surface fracture of fibrous materials in compression,” in: Abstracts ICF-8, Part II, Kiev, Ukraine (1993), pp. 393–394.

  520. Yu. N. Lapusta, “On stability loss of fibers in composite materials near the boundaries,” in: Proc. ECF 11, September 3–6, 1996, Poitiers, France, Vol. III (1996), pp. 1633–1638.

  521. Yu. N. Lapusta, “Study of near-surface buckling of composite materials in zones of compression (model of a piecewise-uniform medium),” in: Proc. ICCST/2, June 9–11, 1998, Durban, South Africa (1998), pp. 145–148.

  522. Yu. N. Lapusta, “A general micromechanical approach to the study of the near-surface buckling in fibrous composites,” in: Proc. ECF 12, 13–18.09.1998, Sheffield, UK, Vol. 13 (1998), pp. 1477–1482.

  523. Yu. N. Lapusta, “Prediction of compressive strength of fiber-reinforced composite based on 3-D microlevel consideration,” in: Proc. ARQUIMACOM 98, 7–9.10.1998, Bordeaux, France (1998), pp. 165–169.

  524. Yu. N. Lapusta, “A 3-D model for possible micro-instability patterns in a boundary layer of a fibre composite under compression,” Comp. Sci. Technol., 62, 805–817 (2002).

    Google Scholar 

  525. Yu. N. Lapusta and W. Wagner, “An estimation on the influence of matrix cavity and damaged fibre-matrix interface on stability of composites,” ZAMM., 81, 855–856 (2001).

    MATH  Google Scholar 

  526. Yu. N. Lapusta and W. Wagner, “On various material and fibre-matrix interface models in the near-surface instability problems for fibrous composites,” Composites Part A: Appl. Sci. Manufact., 32, 413–423 (2001).

    Google Scholar 

  527. Yu. N. Lapusta and W. Wagner, “A numerical estimation of the effects of a cylindrical hole and imperfect bounding on stability of a fiber in an elastic matrix,” Int. J. Num. Meth. Eng., 51, 631–646 (2001).

    MATH  Google Scholar 

  528. A. V. Men’shikov, “Elastodynamics contact problem for two penny-shaped cracks,” in: Abstr. and Proc. 21st ICTAM 04, Warsaw, Poland (2004), p. 262.

  529. A. V. Men’shikov and I. A. Guz, “Contact interaction of crack faces under oblique incidence of a harmonic wave,” Int. J. Fract., 139, No. 1, 145–152 (2006).

  530. A. V. Men’shikov and I. A. Guz, “Effect of the contact interaction on the stress intensity factors for a crack under harmonic loading,” Appl. Mech. Mater., 5–6, 174–180 (2006).

  531. A. V. Men’shikov and I. A. Guz, “Effect of contact interaction of the crack faces for a crack under harmonic loading,” Int. Appl. Mech., 43, No. 7, 809–815 (2007).

    ADS  Google Scholar 

  532. A. V. Men’shikov, M. V. Men’shikova, and W. L. Wendland, “On use of the Galerkin method to solve the fracture mechanics problem for a linear crack under normal loading,” Int. Appl. Mech., 41, No. 11, 1324–1328 (2005).

    ADS  MathSciNet  Google Scholar 

  533. V. A. Men’shikov, A. V. Men’shikov, and I. A. Guz, “Interfacial crack between elastic half-spaces under harmonic loading,” Int. Appl. Mech., 43, No. 8, 865–873 (2007).

    ADS  MathSciNet  Google Scholar 

  534. A. N. Guz (guest ed.), “Micromechanics of composite materials: Focus on Ukrainian research,” Appl. Mech. Reviews, 45, No. 2, 13–101 (1992). A. N. Guz, Introduction, 14–15. About the authors, 16. S. D. Akbarov and A. N. Guz, “Statics of laminated and fibrous composites,” 17–34. A. N. Guz and N. A. Shul’ga, “Dynamics of laminated and fibrous composites,” 35–60. I. Yu. Babich and A. N. Guz, “Stability of fibrous composites,” 61–80. A. N. Guz and V. N. Chekhov, “Stability of laminated composites,” 81–101.

  535. V. V. Mikhas’kiv, J. Sladek, V. Sladek, and A. I. Stepanyuk, “Stress concentration near an elliptic crack in the interface between elastic bodies under steady-state vibration,” Int. Appl. Mech., 40, No. 6, 664–671 (2004).

    ADS  Google Scholar 

  536. O. B. Milovanova and M. Sh. Dyshel’, “Experimental investigation of the buckling form of tensioned plates with a slit,” Sov. Appl. Mech., 14, No. 1, 101–103 (1978).

    ADS  Google Scholar 

  537. O. B. Milovanova and M. Sh. Dyshel’, “Stability of thin sheets with an oblique slit in tension,” Sov. Appl. Mech., 16, No. 4, 333–336 (1980).

    ADS  MATH  Google Scholar 

  538. D. A. Musaev, “Stability of a noncircular cylinder in an elastic matrix under finite deformations,” Sov. Appl. Mech., 38, No. 6, 566–569 (1988).

    ADS  MATH  Google Scholar 

  539. D. A. Musaev and F. M. Nagiev, “Stability of a row of noncircular cylinders in an elastic matrix with finite strains,” Sov. Appl. Mech., 26, No. 10, 929–933 (1990).

    ADS  MATH  Google Scholar 

  540. V. M. Nazarenko, “Mutual effect of a circular surface crack and a free boundary in an axisymmetric problem of the fracture of an incompressible half space in compression along the crack plane,” Sov. Appl. Mech., 21, No. 2, 133–137 (1985).

    ADS  MATH  Google Scholar 

  541. V. M. Nazarenko, “Plastic rupture of materials during compression along near-surface fractures,” Sov. Appl. Mech., 21, No. 2, 133–137 (1986).

    ADS  MATH  Google Scholar 

  542. V. M. Nazarenko, “Two-dimensional problem of the fracture of materials in compression along surface cracks,” Sov. Appl. Mech., 22, No. 10, 970–977 (1986).

    ADS  MATH  Google Scholar 

  543. V. M. Nazarenko, “Theory of fracture of materials in compression along near-surface cracks under plane-strain conditions,” Sov. Appl. Mech., 22, No. 12, 1192–1199 (1986).

    ADS  Google Scholar 

  544. V. M. Nazarenko, “Fracture of plastic masses with translational strain-hardening in compression along near-surface cracks,” Sov. Appl. Mech., 23, No. 1, 61–64 (1987).

    ADS  Google Scholar 

  545. V. M. Nazarenko, V. L. Bogdanov, and H. Altenbach, “Influence of initial stress on fracture of a halfspace containing a penny-shaped crack under radial shear,” Int. J. Fract., 104, 275–289 (2000).

    Google Scholar 

  546. J. L. Novinski, “On the elastic stability of thick columns,” Acta Mech., 7, No. 4, 279–286 (1969).

    Google Scholar 

  547. I. W. Obreimoff, “The splitting strength of mica,” Proc. Soc. London A., 127A, 290–297 (1930).

    ADS  Google Scholar 

  548. M. R. Pinnel and F. Lawley, “Correlation on uniaxial yielding and substructe in aluminium-stainless steel composites,” Metall. Trans., 1, No. 5, 929–933 (1970).

    Google Scholar 

  549. E. Radi, D. Bigoni, and D. Capuani, “Effect of pre-stress on crack tip fields in elastic incompressible solids,” Int. J. Solids Struct., 39, 3971–3996 (2002).

    MATH  Google Scholar 

  550. I. R. Rice, “Path independent integral and the approximate analysis of strain concentration by notches and cracks,” J. Appl. Mech., 35, No. 4, 340–350 (1968).

    Google Scholar 

  551. B. W. Rosen, “Mechanics of composite strengthening,” in: Fiber Composite Materials. American Society for Metals, Metals Park, Ohio (1965), pp. 37–75.

  552. O. G. Rzayev and S. D. Akbarov, “Local buckling of the elastic and viscoelastic coating around the penny-shaped interface crack,” Int. J. Eng. Sci., 40, 1435–1451 (2002).

    MATH  Google Scholar 

  553. M. A. Sadovsky, S. L. Pu, and M. A. Hussain, “Buckling of microfibers,” J. Appl. Mech., 34, No. 4, 295–302 (1967).

    Google Scholar 

  554. Satish Kumar, Tensuya Uchida, Thuy Dang, Xiefei Zhang, and Young-Bin Park, “Polymer/carbon nano fiber composite fibers,” in: SAMPE–2004–Long Beach, CA, May 16–20 (2004), pp. 1–12.

  555. R. A. Schapery, “Approximate methods of transform inversion for viscoelastic stress analyses,” Proc. US Nat. Congr. Appl. ASME, No. 4, 1075–1085 (1966).

  556. H. Schuerch, “Prediction of compressive strength in uniaxial boron fiber metal matrix composite material,” AIAA J., 4, No. 1, 102–106 (1966).

    ADS  Google Scholar 

  557. C. R. Schultheisz and A. M. Waas, “Compressive failure of composites. Part 1: Testing and micromechanical theories,” Prog. Aerospace Sci., 32, 1–42 (1996).

    ADS  Google Scholar 

  558. H. R. Shetty and T. W. Chou, “Mechanical properties and failure characteristic of FP-aluminium and W-aluminium composites,” Metall. Trans. A., 16, No. 5, 833–864 (1985).

    Google Scholar 

  559. A. V. Skachenko, “Stability of multilayer composite under inelastic deformations,” Sov. Appl. Mech., 15, No. 8, 756–757 (1979).

    ADS  MATH  Google Scholar 

  560. E. Soos, “Resonance and stress concentration in a prestressed elastic solid containing a crack. An apparent paradox,” Int. J. Eng. Sci., 34, No. 3, 363–374 (1996).

    MathSciNet  MATH  Google Scholar 

  561. R. V. Southwell, “On the general theory of elastic stability,” Philos. Trans. Roy. Soc. London, Ser. A, 213, 187–244 (1913).

    ADS  MATH  Google Scholar 

  562. C. Soutis, N. A. Flek, and P. A. Smith, “Failure prediction technique for compression loaded carbon fibre-epoxy laminate with open hole,” J. Comp. Mat., 25, 1476–1498 (1991).

    Google Scholar 

  563. C. Soutis and I. A. Guz, “On analytical approaches to failure composites caused by internal instability under deformations,” in: Proc. EUROMECH Colloq. 400, September 21–29, 1999, London (1999), pp. 51–58.

  564. C. Soutis and I. A. Guz, “Predicting fracture of layered composites caused by internal instability,” Composites Part A: Appl. Sci. Manufact., 39, No. 9, 1243–1253 (2001).

    Google Scholar 

  565. I. P. Starodubtsev, “Fracture of a body in compression along two parallel cracks under plane-strain conditions,” Sov. Appl. Mech., 24, No. 6, 604–607 (1988).

    ADS  MATH  Google Scholar 

  566. E. A. Tkachenko and V. N. Chekhov, “Combined effect of temperature and compressive surface loads on the stability of elastic multilayer coating with small subcritical strains,” Int. Appl. Mech., 34, No. 8, 729–735 (1998).

    ADS  MATH  Google Scholar 

  567. E. A. Tkachenko and V. N. Chekhov, “The stability of tribotechnical laminated polymeric coatings,” Int. Appl. Mech., 36, No. 9, 1198–1204 (2000).

    ADS  MATH  Google Scholar 

  568. E. A. Tkachenko and V. N. Chekhov, “The stability of laminated elastomer coatings under surface loading,” Int. Appl. Mech., 36, No. 10, 1355–1362 (2000).

    ADS  MATH  Google Scholar 

  569. E. A. Tkachenko and V. N. Chekhov, “Stability of laminated coating under elastoplastic deformations,” Int. Appl. Mech., 37, No. 3, 361–368 (2001).

    ADS  Google Scholar 

  570. E. A. Tkachenko and V. N. Chekhov, “Stability of an elastic layer stack between two half-space under compressive loads,” Int. Appl. Mech., 38, No. 11, 1381–1387 (2002).

    ADS  MATH  Google Scholar 

  571. E. A. Tkachenko and V. N. Chekhov, “Stability of a lamine between two homogeneous half-space under inelastic deformation,” Int. Appl. Mech., 41, No. 5, 481–489 (2005).

    ADS  Google Scholar 

  572. A. M. Waas and C. R. Schultheisz, “Compressive failure of composites, Part 2: Experimental studies,” Prog. Aerospace Sci., 32, 43–78 (1996).

    ADS  Google Scholar 

  573. M. A. Wadee, C. W. Hunt, and M. A. Peletier, “Kink band instability in layered structures,” J. Mech. Phys. Solids, 52, 1071–1091 (2004).

    ADS  MATH  Google Scholar 

  574. B. Winiarski and I. A. Guz, “The effect of cracks interaction on the critical strain in orthotropic heterogeneous material under compressive static loading,” in: Proc. 2006 ASME Int. Mech. Eng. Congr. & Exposition (IMECE 2006), November 5–10, 2006, ASME, Chicago, USA (2006), p. 9.

  575. B. Winiarski and I. A. Guz, “Plane problem for layered composites with periodic array of interfacial cracks under loading,” Int. J. Fract., 144, No. 2, 113–119 (2007).

    MATH  Google Scholar 

  576. B. Winiarski abd I. A. Guz, “The effect of cracks interaction for transversely isotropic layered material under compressive loading,” Finite Elem. in Analysis and Design, 44, No. 4, 197–213 (2008).

    Google Scholar 

  577. B. Winiarski and I. A. Guz, “The effect of fibre volume fraction on the onset of fracture in laminar materials with an array of coplanar interface cracks,” Comp. Sci. Technol., 68, No. 12, 2367–2375 (2008).

    Google Scholar 

  578. B. Winiarski and I. A. Guz, “The effect of cracks interaction in orthotropic layered materials under compressive loading,” The Phil. Trans. Royal Soc. A, 366, No. 1871, 1835–1839 (2008).

    ADS  MATH  Google Scholar 

  579. C. H. Wu, “Plane-strain buckling of a crack in harmonic solid subjected to crack-parallel compression,” J. Appl. Mech., 46, 597–604 (1979).

    ADS  MATH  Google Scholar 

  580. C. H. Wu, “Plane strain buckling of a crack in incompressible elastic solids,” J. Elasticity, 10, No. 2, 161–177 (1980).

    MathSciNet  MATH  Google Scholar 

  581. E. Yoffe, “The moving Griffith crack,” Phil. Mag., 4, No. 330, 739–750 (1951).

    MathSciNet  MATH  Google Scholar 

  582. V. V. Zozulya, “Investigation of the contact of edges of cracks interacting with a plane longitudinal harmonic wave,” Sov. Appl. Mech., 27, No. 12, 1191–1195 (1991).

    ADS  MATH  Google Scholar 

  583. V. V. Zozulya, “Contact interaction between the edges of a crack in an infinite plane under a harmonic load,” Int. Appl. Mech., 28, No. 1, 61–64 (1992).

    ADS  MathSciNet  MATH  Google Scholar 

  584. V. V. Zozulya, “Investigation of the effect of crack edge contact for loading by a harmonic wave,” Int. Appl. Mech., 28, No. 2, 95–99 (1992).

    ADS  MathSciNet  Google Scholar 

  585. V. V. Zozulya, “Harmonic loading of the edges of two collinear cracks in plane,” Int. Appl. Mech., 28, No. 3, 170–172 (1992).

    ADS  Google Scholar 

  586. V. V. Zozulya, “Contact problem for a plane crack under normally incident antiplane shear wave,” Int. Appl. Mech., 43, No. 5, 586–588 (2007).

    ADS  MathSciNet  Google Scholar 

  587. V. V. Zozulya, “Stress intensity factor in a contact problem for a plane crack under an antiplane shear wave,” Int. Appl. Mech., 43, No. 9, 1043–1047 (2007).

    ADS  MathSciNet  Google Scholar 

  588. V. V. Zozulya and N. V. Fenchenko, “Influence of contact interaction between the sides of crack on characteristics of failure mechanics in action P- and SV waves,” Int. Appl. Mech., 35, No. 2, 175–180 (1999).

    ADS  Google Scholar 

  589. V. V. Zozulya and A. N. Lukin, “Solution of three-dimensional problems of fracture mechanics by the method of integral boundary equations,” Int. Appl. Mech., 34, No. 6, 544–551 (1998).

    Google Scholar 

  590. V. V. Zozulya and A. V. Men’shikov, “Contact interaction of the faces of a rectangular crack under normally incident tension-compression waves,” Int. Appl. Mech., 38, No. 3, 302–307 (2002).

    ADS  MATH  Google Scholar 

  591. V. V. Zozulya and A. V. Men’shikov, “On one contact problem in fracture mechanics for a normally incident tension-compression wave,” Int. Appl. Mech., 38, No. 7, 824–828 (2002).

    ADS  MATH  Google Scholar 

  592. V. V. Zozulya and A. V. Men’shikov, “Contact interaction of the faces of a penny-shaped crack under a normally incident shear wave,” Int. Appl. Mech., 38, No. 9, 1114–1118 (2002).

    ADS  MATH  Google Scholar 

  593. V. V. Zozulya and A. V. Men’shikov, “Use of the constrained optimization algorithms in some problems of fracture mechanics,” Optimiz. Eng., 4, No. 4, 365–384 (2003).

    MathSciNet  MATH  Google Scholar 

  594. V. V. Zozulya and M. V. Men’shikova, “Study of interactive algorithms for solution of dynamic contact problems for elastic cracked bodies,” Int. Appl. Mech., 38, No. 5, 573–578 (2002).

    ADS  MATH  Google Scholar 

  595. V. V. Zozulya and M. V. Men’shikova, “Dynamic contact problems for a plane with a finite crack,” Int. Appl. Mech., 38, No. 12, 1459–1463 (2002).

    ADS  MATH  Google Scholar 

  596. V. V. Zozulya and V. A. Men’shikov, “Contact interaction of the edges of a crack in a plane under harmonic loading,” Int. Appl. Mech., 30, No. 12, 986–989 (1994).

    ADS  MATH  Google Scholar 

  597. V. V. Zozulya and V. A. Men’shikov, “Solution of three-dimensional problems of the dynamic theory of elasticity for bodies with cracks using hypersingular integrals,” Int. Appl. Mech., 36, No. 1, 74–81 (2000).

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Guz.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 55, No. 4, pp. 3–100, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guz, A.N. Nonclassical Problems of Fracture/Failure Mechanics: On the Occasion of the 50th Anniversary of Research (Review). III. Int Appl Mech 55, 343–415 (2019). https://doi.org/10.1007/s10778-019-00960-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-019-00960-4

Keywords

Navigation