Skip to main content
Log in

Effect of Prestresses on Quasi-Lamb Waves in a System Consisting of a Compressible Viscous Liquid Half-Space and an Elastic Layer

  • Published:
International Applied Mechanics Aims and scope

The problem of propagation quasi-Lamb waves in a prestrained elastic layer interacting with a half-space of compressible viscous fluid is considered. The problem is solved using the three-dimensional linearized equations of theory of finite deformations for the elastic layer and the three-dimensional linearized Navier–Stokes equations for the compressible viscous fluid. A problem statement and approach based on the general solutions of linearized equations for the elastic body and fluid are used. The dispersion equations describing the propagation of quasi-Lamb waves in hydroelastic systems over wide range of frequencies are derived. The effect of the initial stresses and the thickness of the elastic layer and compressible viscous liquid half-space on the phase velocities and damping factors of quasi-Lamb modes are analyzed. The approach developed and the results obtained make it possible to establish the limits of applicability of the models for wave processes, based on different versions of the theory of small initial deformations, the classical theory of elasticity, and the model of ideal fluid. The numerical results are presented in the form of graphs and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Viktorov, Surface Acoustic Waves in Solids [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  2. M. M. Vol’kenshtein and V. M. Levin, “Structure of a Stoneley wave at the interface between a viscous fluid and a solid,” Akust. Zh., 34, No. 4, 608–615 (1988).

    Google Scholar 

  3. A. N. Guz, General Issues, Vol. 1 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

  4. A. N. Guz, Propagation Laws, Vol. 2 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

  5. A. N. Guz, Dynamics of Compressible Viscous Fluid [in Russian], A.S.K., Kyiv (1998).

    Google Scholar 

  6. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

    Google Scholar 

  7. A. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses, Part 1: General Principles. Waves in Unbounded Bodies and Surface Waves [in Russian], LAP LAMBERT Academic Publishing, Saarbrucken (2016).

    Google Scholar 

  8. A. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses, Part 2: Waves in Partially Bounded Bodies [in Russian], LAP LAMBERT Academic Publishing, Saarbrucken (2016).

    Google Scholar 

  9. A. N. Guz, An Introduction to the Dynamics of Compressible Viscous Fluid [in Russian], LAP LAMBERT Academic Publishing RU, Saarbrucken (2017).

    Google Scholar 

  10. A. N. Guz and A. M. Bagno, “Effect of the prestresses on the velocities of waves in a prestrained compressible layer contacting with a liquid half-space,” Dokl. AN SSSR, 329, No. 6, 715–717 (1993).

    Google Scholar 

  11. A. N. Guz, A. P. Zhuk, and F. G. Makhort, Waves in a Prestressed Layer [in Russian], Naukova Dumka, Kyiv (1976).

    Google Scholar 

  12. A. P. Zhuk, “Stoneley waves in a prestressed medium,” Prikl. Mekh., 16, No. 1, 113–116 (1980).

    MathSciNet  Google Scholar 

  13. S. Yu. Babich, A. N. Guz, and A. P. Zhuk, “Elastic waves in bodies with initial stresses,” Int. Appl. Mech., 15, No. 4, 277–291 (1979).

    ADS  MathSciNet  MATH  Google Scholar 

  14. A. M. Bagno, “Wave propagation in an elastic layer interacting with a viscous liquid layer,” Int. Appl. Mech., 52, No. 2, 133–139 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. M. Bagno, “Effect of prestresses on the dispersion of quasi-Lamb waves in the system consisting of an ideal liquid layer and a compressible elastic layer,” Int. Appl. Mech., 53, No. 2, 139–148 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. M. Bagno and A. N. Guz, “Elastic waves in pre-stressed bodies interacting with a fluid (survey),” Int. Appl. Mech., 33, No. 6, 435–463 (1997).

    Article  ADS  Google Scholar 

  17. A. M. Bagno and A. N. Guz, “Effect of prestresses on the dispersion of waves in a system consisting of a viscous liquid layer and compressible elastic layer,” Int. Appl. Mech., 52, No. 4, 333–341 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  18. B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT & E Int., 39, No. 7, 525–541 (2006).

    Article  Google Scholar 

  19. A. Gibson and J. Popovics, “Lamb wave basis for impact-echo method analysis,” J. Eng. Mech., 131, No. 4, 438–443 (2005).

    Article  Google Scholar 

  20. A. N. Guz, “Aerohydroelasticity problems for bodies with initial stresses,” Int. Appl. Mech., 16, No. 3, 175–190 (1980).

    ADS  MathSciNet  MATH  Google Scholar 

  21. A. N. Guz, “Compressible, viscous fluid dynamics (review). Part 1,” Int. Appl. Mech., 36, No. 1, 14–39 (2000).

    Article  ADS  Google Scholar 

  22. A. N. Guz, “The dynamics of a compressible viscous liquid (review). II,” Int. Appl. Mech., 36, No. 3, 281–302 (2000).

    Article  ADS  Google Scholar 

  23. A. N. Guz, “Elastic waves in bodies with initial (residual) stresses,” Int. Appl. Mech., 38, No. 1, 23–59 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. N. Guz, Dynamics of Compressible Viscous Fluid, Cambridge Scientific Publishers, Cambridge (2009).

    MATH  Google Scholar 

  25. A. N. Guz, “On the foundations of the ultrasonic non-destructive determination of stresses in near-the-surface layers of materials. Review,” J. Phys. Sci. Appl., 1, No. 1, June, 1–15 (2011).

  26. A. N. Guz, “Ultrasonic nondestructive method for stress analysis of structural members and near-surface layers of materials: Focus on Ukrainian research (review),” Int. Appl. Mech., 50, No. 3, 231–252 (2014).

    Article  ADS  Google Scholar 

  27. A. N. Guz, A. P. Zhuk, and A. M. Bagno, “Dynamics of elastic bodies, solid particles, and fluid parcels in a compressible viscous fluid (review),” Int. Appl. Mech., 52, No. 5, 449–507 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  28. K. Y. Jhang, “Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review,” Int. J. Precis. Eng. Manufact., 10, No. 1, 123–135 (2009).

    Article  Google Scholar 

  29. S. S. Kessler, S. M. Spearing, and C. Soutis, “Damage detection in composite materials using Lamb wave methods,” Smart Mater. Struct., 11, No. 2, 269–279 (2002).

    Article  ADS  Google Scholar 

  30. M. Kobayashi, S. Tang, S. Miura, K. Iwabuchi, S. Oomori, and H. Fujiki, “Ultrasonic nondestructive material evaluation method and study on texture and cross slip effects under simple and pure shear states,” Int. J. Plasticity, 19, No. 6, 771–804 (2003).

    Article  Google Scholar 

  31. K. R. Leonard, E. V. Malyarenko, and M. K. Hinders, “Ultrasonic Lamb wave tomography,” Inverse Problems, 18, No. 6, 1795–1808 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  32. L. Liu and Y. Ju, “A high-efficiency nondestructive method for remote detection and quantitative evaluation of pipe wall thinning using microwaves,” NDT & E Int., 44, No. 1, 106–110 (2011).

    Article  Google Scholar 

  33. M. Ottenio, M. Destrade, and R. W. Ogden, “Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid,” Int. J. Non-Lin. Mech., 42, No. 2, 310–320 (2007).

    Article  Google Scholar 

  34. C. Ramadas, K. Balasubramaniam, M. Joshi, and C. V. Krishnamurthy, “Interaction of the primary anti-symmetric Lamb mode (Ao) with symmetric delaminations: numerical and experimental studies,” Smart Mater. Struct., 18, No. 8, 1–7 (2009).

    Article  Google Scholar 

  35. N. S. Rossini, M. Dassisti, K. Y. Benyounis, and A. G. Olabi, “Methods of measuring residual stresses in components,” Materials & Design, 35, 572–588 (2012).

    Article  Google Scholar 

  36. M. Spies, “Analytical methods for modeling of ultrasonic nondestructive testing of anisotropic media,” Ultrasonics, 42, No. 1–9, 213–219 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bagno.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 54, No. 6, pp. 3–19, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guz, A.N., Bagno, A.M. Effect of Prestresses on Quasi-Lamb Waves in a System Consisting of a Compressible Viscous Liquid Half-Space and an Elastic Layer. Int Appl Mech 54, 617–627 (2018). https://doi.org/10.1007/s10778-018-0916-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-018-0916-9

Keywords

Navigation