Skip to main content
Log in

Stability of the Parametric Vibrations of a Shell in the Form of a Hyperbolic Paraboloid

  • Published:
International Applied Mechanics Aims and scope

A numerical technique for constructing a reduced model of the stability of the parametric vibrations of a hyperbolic paraboloidal shallow shell with negative Gaussian curvature is presented. To form the reduced matrices of mass, damping, stiffness, and geometrical stiffness, finite-element software routines are employed. The nonlinear analysis of static and dynamic behavior of a hyperbolic paraboloid made it possible to reveal the differences in its behavior from that of shallow shells with positive Gaussian curvature. By analyzing the influence of the constant component of the parametric loading on the natural frequencies, it is established that the shell losses stability in a certain loading range, followed by stabilization. To study this feature, it is proposed to use an additional reduced model of the stability of the parametric vibrations of a hyperbolic paraboloid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. P. Abovskii and I. I. Samol’yanov, “Design of a shallow shell in the form of a hyperbolic paraboloid,” Stroit. Mekh. Rasch. Sooruzh., No. 6, 7–12 (1969).

  2. V. A. Bazhenov, V. I. Gulyaev, and E. O. Gotsulyak, Stability of Nonlinear Mechanical Systems [in Russian], Vyshch. Shkola, L’vov (1982).

    Google Scholar 

  3. V. A. Bazhenov, E. S. Dekhtyaryuk, O. O. Luk’yanchenko, and O. V. Kostina, “Numerical construction of reduced models of stochastic parametric vibrations of shallow shells,” in: Resistance of Materials and Structural Theory [in Ukrainian], issue 87, KNUBA, Kyiv (2011), pp. 73–87.

  4. V. A. Bazhenov, O. O. Luk’yanchenko, Yu. V. Vorona, and O. V. Kostina, “Dynamic stability of parametric vibrations of elastic systems,” in: Resistance of Materials and Structural Theory [in Ukrainian], issue 95, KNUBA, Kyiv (2015), pp. 145–185.

  5. F. I. Berman, “Design of a hyperbolic shell under an asymmetrical hydrostatic load,” Sb. Trudov TsNIIEPsel’stroi, No. 5, 106-123 (1973).

  6. V. V. Bolotin, Dynamic Stability of Elastic Systems [in Russian], Gostekhizdat, Moscow (1956).

    Google Scholar 

  7. G. G. Vinogradov, Design of Spatial Building Structures [in Russian], Stroiizdat, Leningrad (1990).

    Google Scholar 

  8. A. S. Vol’mir, Flexible Plates and Shells [in Russian], Gostekhteorizdat, Moscow (1956).

    Google Scholar 

  9. A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells [in Russan], Nauka, Moscow (1982).

    Google Scholar 

  10. A. S. Vol’mir, Stability of Deformable Systems [in Russian], Fizmatgiz, Moscow (1967).

    Google Scholar 

  11. E. O. Gotsulyak, E. S. Dekhtyaryuk, and O. O. Luk’yanchenko, “Construction of a reduced model of parametric vibrations of a cylindrical shell under pure bending,” in: Resistance of Materials and Structural Theory [in Ukrainian], issue 84, KNUBA, Kyiv (2009), pp. 11–19.

  12. A. S. Dekhtyar and A. O. Rasskazov, “Experimental study of load-bearing capacity of shells in the form of a hyperbolic paraboloid,” Prostr. Konstr. Krasnoyarskogo Kraya, No. 4, 311–321 (1969).

  13. A. A. Zhuravlev, E. Yu. Erzh, and D. A. Zhuravlev, “Wooden structures of hyperbolic shells,” in: Light Structures [in Russian], Rostovskii Gos. Stroit. Univ., Rostov-on-Don (2000), pp. 4–56.

  14. V. Kato and T. Nishimura, “Roof produced by combination of hyperbolic paraboloids,” Large-Span Shells [in Russian], Stroiizdat, Moscow (1969), pp. 167–195.

  15. A. O. Rasskazov, Design of Shells in the Form of Hyperbolic Paraboloids [in Russian], KGU, Kyiv (1972).

    Google Scholar 

  16. A. R. Rzhanitsyn and V. V. Em, “Design of elastic thin shells of arbitrary shape using the moment shell theory in rectangular coordinates,” in: Statics of Structures [in Russian], Kyiv (1978), pp. 88–91.

  17. S. P. Rychkov, MSC.visual NASTRAN for Windows, NT Press, Moscow (2004).

  18. I. I. Samol’yanov, Strength, Stability, and Vibrations of a Hyperbolic Paraboloid [in Russian], Lutsk. Industr. Inst., Lutsk (1993).

    Google Scholar 

  19. O. P. Sunak, S. O. Uzhegov, and O. A. Pakholyuk, “Determining the internal forces in a shallow shell with negative Gaussian curvature under vertical loading,” Resursoekonom. Mater. Konstr. Budivli, Sporudy, No. 23, 411–416 (2012).

  20. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill Book Company, New York (1959).

    MATH  Google Scholar 

  21. G. Schmidt, Parametererregte Schwingungen, VEB Deutscher Verlag der Wissenschaften, Berlin (1975).

    MATH  Google Scholar 

  22. K. V. Avramov and Yu. V. Mikhlin, “Review of applications of nonlinear normal modes for vibrating mechanical systems,” Appl. Mech. Rev., No. 65(2), 1–20 (2013).

  23. M. Beckh, Hyperbolic Structures: Shukhov’s Lattice Towers—Forerunners of Modern Lightweight Constructions, John Wiley & Sons (2015).

  24. E. I. Bespalova and G. P. Urusova, “Dynamic instability of shells of revolution with alternating curvature under periodic loading,” Int. Appl. Mech., 49, No. 5, 521–527 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  25. A. V. Konstantinov, O. S. Limarchenko, V. N. Melnik, and I. Yu. Semenova, “Problem of the parametric oscillations of a noncylindrical tank partially filled with a fluid,” Int. Appl. Mech., 52, No. 6, 599–605 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  26. L. V. Kurpa and O. S. Mazur, “Parametric vibrations of orthotropic plates with complex shape,” Int. Appl. Mech., 46, No. 4, 438–449 (2010).

    Article  ADS  MATH  Google Scholar 

  27. M. Labou, “Numerical schemes for stability in probability of perturbed dynamical systems,” Int. Appl. Mech., 48, No. 4, 465–484 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Mars, S. Koubaa, M. Wali, and F. Dammak, “Numerical analysis of geometrically non-linear behavior of functionally graded shells,” Lat. Am. J. Solids Struct. Rio de Janeiro, No. 14 (11) (2017).

  29. A. H. Nayfeh, “The response of two-degree-of-freedom systems with quadratic nonlinearities to a parametric excitation,” J. Sound Vibr., 88, No. 4, 547–557 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. S. K. Panda and B. N. Singh, “Non-linear free vibration analysis of laminated composite cylindrical/hyperboloid shell panels based on higher-order shear deformation theory using non-linear finite-element method,” in: Proc. Inst. of Mech. Engineers, Part G: J. of Aerospace Eng., No. 222(7), 993–1006 (2008).

  31. Soviet Applied Mechanics (Contents, 1966–1991), International Applied Mechanics (Contents, 1992–2005), ASK, Kyiv (2006).

  32. B. G. Towne, “Dynamic characteristics of a hyperboloid shell of revolution with application to flexible couplings,” in: Thesis. Rochester Institute of Technology (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Luk’yanchenko.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 54, No. 3, pp. 36–49, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, V.A., Luk’yanchenko, O.A., Vorona, Y.V. et al. Stability of the Parametric Vibrations of a Shell in the Form of a Hyperbolic Paraboloid. Int Appl Mech 54, 274–286 (2018). https://doi.org/10.1007/s10778-018-0880-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-018-0880-4

Keywords

Navigation