Effect of Change in the Curvature Parameters on the Stress State of Concave Corrugated Hollow Cylinders

The effect of change in the curvature parameters of the stress state of concave corrugated hollow cylinders is studied. The change is attributed to variations in the radius of a moving circle and in the distance to its center. The problem is solved in spatial statement using analytical methods of separation of variables, approximation of functions by discrete Fourier series, and the numerical discrete-orthogonalization method. Results are presented in the form of plots demonstrating distributions of displacement and stress fields and are analyzed.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk, 16, No. 3, 171–174 (1961).

    MathSciNet  Google Scholar 

  2. 2.

    V. S. Hudramovich, “Modeling stress–strain state of shell structures of rocket and power engineering,” Tekhn. Mekh., No. 4, 97–104 (2013).

  3. 3.

    I. G. Emel’yanov, “Determining stress state of shell structures using discrete Fourier series,” Vych. Mekh. Splosh. Sred, 8, No. 3, 245–253 (2015).

    Google Scholar 

  4. 4.

    V. O. Kaledin, S. M. Aul’chenko, A. B. Mitkevich, E. B. Reshetnikova, E. A. Sedova, and Yu. V. Shpakova, Modeling Statics and Dynamics of Shell Structures of Composite Materials [in Russian], Fizmatlit, Moscow, (2014).

    Google Scholar 

  5. 5.

    A. A. Savelov, Plane Curves. Taxonomy, Properties, Application (Reference Guide) [in Russian], Fizmatlit, Moscow (1960).

  6. 6.

    I. P. Shats’kyi and A. B. Struk, “Stressed state of pipeline in zones of soil local fracture,” Strength of Materials, 41, No. 5 (2009).

  7. 7.

    V. I. Andreev, “Numerical-analytical solution of a two-dimensional problem for elastic radially inhomogeneous thick-walled cylinder,” Appl. Mech. Mater., 752–753, 642–647 (2015).

  8. 8.

    E. I. Bespalova and G. P. Urusova, “Vibrations of shells of revolution with branched meridian,” Int. Appl. Mech., 52, No. 1, 117–126 (2016).

    MathSciNet  Article  Google Scholar 

  9. 9.

    Ya. M. Grigorenko and L. S. Rozhok, “Stress state of longitudinally corrugated hollow cylinders with different cross-sectional curvature,” Int. Appl. Mech., 52, No. 6, 581–586 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    K. M. Dovbnya and N. A. Shevtsova, “Studies on the stress state of an orthotropic shell of arbitrary curvature with the through crack under bending loading,” Strength of Materials, 46, No. 3, 345–349 (2014).

    Article  Google Scholar 

  11. 11.

    R. W. Hamming, Numerical Methods for Scientists and Engineers, MG Graw-Hill, New York (1962).

    MATH  Google Scholar 

  12. 12.

    E. I. Hart, V. S. Hudramovich, S. A. Ryabokon’, and E. V. Samarskaya, “Numerical simulation of stress-strain state for nonhomogeneous shell-type structures based on the finite-element method,” Model. Numer. Simul. Mater. Sci., 3, No. 4, 155–157 (2013).

    Google Scholar 

  13. 13.

    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, MG Graw-Hill, New York (1961).

    MATH  Google Scholar 

  14. 14.

    G. A. Popov, Yu. S. Protserov, and I. A. Gonchar, “Exact solution of some axisymmetric problems for elastic cylinders of finite length taking into account specific weight,” Int. Appl. Mech., 51, No. 4, 391–402 (2015).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    S. P. Timoshenko, Theory of Elasticity, MG Graw-Hill, New York (1934).

    MATH  Google Scholar 

  16. 16.

    M. Zheng, Y. Zhao, H. Teng, J. Hu, and L. Yu, “Elastic limit analysis for elliptical and circular tubes under lateral tension,” Arab J. Sci. Eng., 40, No. 6, 1727–1732 (2015).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ya. M. Grigorenko.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 54, No. 3, pp. 27–35, May–June, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, Y.M., Rozhok, L.S. Effect of Change in the Curvature Parameters on the Stress State of Concave Corrugated Hollow Cylinders. Int Appl Mech 54, 266–273 (2018). https://doi.org/10.1007/s10778-018-0879-x

Download citation


  • discrete Fourier series
  • discrete-orthogonalization method
  • concave semi-corrugations
  • noncircular hollow cylinders
  • stress state