International Applied Mechanics

, Volume 54, Issue 1, pp 34–40 | Cite as

Kinetics of Mode I Crack Growth in a Viscoelastic Polymeric Material with Nanoinclusions

  • A. A. Kaminsky
  • M. F. Selivanov
  • Yu. A. Chernoivan

The long-term fracture of a plate made of an isotropic linear viscoelastic nanocomposite with a mode I crack is studied. A technique for experimental determination of the viscoelastic characteristics of a nanocomposite is employed. The efficiency of the approach proposed is validated considering data obtained in experiments with real composites. It is shown that the shape of kinetic curves and plate durability significantly depend on the fracture parameters and the concentration of nanoinclusions.


nanocomposite nanoclay viscoelasticity fracture process zone mode I crack long-term fracture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Guz, J. J. Rushchitsky, and I. A. Guz, Introduction to the Mechanics of Nanocomposites [in Russian], S. P. Timoshenko Institute of Mechanics, Kyiv (2010).zbMATHGoogle Scholar
  2. 2.
    A. A. Kaminsky and D. A. Gavrilov, Long-Term Fracture of Cracked Polymeric and Composite Materials [in Russian], Naukova Dumka, Kyiv (1992).Google Scholar
  3. 3.
    T. Beda and Y. Chevalier, “New methods for identifying rheological parameter for fractional derivative modeling of viscoelastic behavior,” Mech. Time-Depend. Mater., 8, No. 2, 105–118 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    A. J. Brunner, A. Necola, M. Rees, Ph. Gasser, X. Kornmann, R. Thoman, and M. Barbezat, “The influence of silicate-based nano-filler on the fracture toughness of epoxy resin,” Eng. Fract. Mech., 73, No. 16, 2336–2345 (2006).CrossRefGoogle Scholar
  5. 5.
    A. Dorigato, A. Pegoretti, and A. Penati, “Linear low-density polyethylene/silica micro- and nanocomposites: dynamic rheological measurements and modelling,” Express Polymer Letters, 4, No. 2, 115–129 (2010).CrossRefGoogle Scholar
  6. 6.
    P. Fernandez, D. Rodriguez, M. J. Lamela, and A. Fernandez-Canteli, “Study of the interconversion between viscoelastic behavior functions of PMMA,” Mech. Time-Depend. Mater., 15, No. 2, 169–180 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    F. Ghadami, M. R. Dadfar, and M. Kazozi, “Hot-cured epoxy-nanoparticulate-filled nanocomposites: Fracture toughness behavior,” Eng. Fract. Mech., 162, 193–200 (2016).CrossRefGoogle Scholar
  8. 8.
    V. P. Golub, B. P. Maslov, and P. V. Fernati, “Identification of the hereditary kernels of isotropic linear viscoelastic materials in combined stress state. 1. Superposition of shear and bulk creep,” Int. Appl. Mech., 52, No. 2, 165–175 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. A. Kaminsky, “Mechanics of the delayed fracture of viscoelastic bodies with crack: Theory and experiment (review),” Int. Appl. Mech., 50, No. 5, 485–548 (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. A. Kaminsky and M. F. Selivanov, “The long-term fracture of the layered viscoelastic plate with through crack under the changing in time load,” Int. Appl. Mech., 38, No. 6, 731–740 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    H. Kubisova, D. Merinska, and P. Svoboda, “PP/clay nanocomposite: optimization of mixing conditions with respect to mechanical properties,” Polymer Bulletin, 65, No. 5, 533–541 (2010).CrossRefGoogle Scholar
  12. 12.
    N. V. Olali, L. V. Voitovich, N. N. Zazimko, and M. P. Malezhik, “Modeling creep processes in aging polymers,” Int. Appl. Mech., 52, No. 2, 176–181 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, “Enhanced mechanical properties of nanocomposites at low graphene content,” ACS Nano, 3, No. 12, 3884–3890 (2009).CrossRefGoogle Scholar
  14. 14.
    T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’Homme, and L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites,” Nature Nanotechnol., 3, No. 6, 327–331 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    Yu. A. Rossikhin and M. V. Shitikova, “Two approaches for studying the impact response of viscoelastic engineering systems: an overview,” Comp. Math. Appl., 66, No. 5, 755–773 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Q. Zhao and S. V. Hoa, “Toughening mechanism of epoxy resins with micro/nano particles,” J. Comp. Mater., 41, 201–219 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Kaminsky
    • 1
  • M. F. Selivanov
    • 1
  • Yu. A. Chernoivan
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations