Skip to main content
Log in

Inelastic Deformation of a Spherical Shell Weakened by a Number of Circular Holes

  • Published:
International Applied Mechanics Aims and scope

The statement of static problems for elastoplastic spherical shells with a number of identical circular holes is presented and the technique of numerical solution of nonlinear problems of the given class is developed. The technique is based on the use of the secondary-stress and variational vector-difference methods. For a shell under internal pressure, it is studied how plastic deformations and geometrical parameters affect distributions of stresses, strains, and displacements in the zone of their concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Guz, ”Solution of problems for a shallow shell in the case of multiply connected domains,” Dokl. AN USSR, 158, No. 16, 1281–1284 (1964).

    Google Scholar 

  2. A. N. Guz, I. S. Chernyshenko, and K. I. Shnerenko, Spherical Bottoms Weakened by Holes [in Russian], Naukova Dumka, Kyiv (1970).

    Google Scholar 

  3. A. N. Guz, I. S. Chernyshenko, V. N. Chekhov, et al., Theory of Thin Shells Weakened by Holes, Vol. 1 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1980).

    MATH  Google Scholar 

  4. P. M. A. Areias, J. H. Song, and T. Belytschko, ”A finite-strain quadrilateral shell element based on discrete Kirchhoff–Love constraints,” Int. J. Numer. Meth. Eng., 64, 1166–1206 (2005).

    Article  MATH  Google Scholar 

  5. A. N. Guz, E. A. Storozhuk, and I. S. Chernyshenko, ”Nonlinear two-dimensional static problems for thin shells with reinforced curvilinear holes,” Int. Appl. Mech., 45, No. 12, 1269–1300 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. A. Kaufman and D. Spera, ”Investigation of the elastic-plastic stress state around reinforced opening in a spherical shell,” NASA Scientific and Technical Publications, Washington, 1–27 (1965).

  7. A. Kharat and V. V. Kulkarni, “Stress concentration at openings in pressure vessels – a review,” Int. J. in Innovative Research in Science, Engineering and Technology, 2, No. 3, 670–678 (2013).

  8. J. S. Liu, G. T. Parks, P. J. Clarkson, ”Shape optimization of axisymmetric cylindrical nozzles in spherical pressure vessels subject to stress constraints,” Int. J. of Pressure Vessels and Piping, 78, 1–9 (2001).

    Article  Google Scholar 

  9. I. V. Lutskaya, V. A. Maksimyuk, E. A. Storozhuk, and I. S. Chernyshenko, ”Nonlinear elastic deformation of thin composite shells of discretely variable thickness,” Int. Appl. Mech., 52, No. 6, 616–623 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  10. V. A. Maksimyuk, E. A. Storozhuk, and I. S. Chernyshenko, ”Stress–strain state of flexible orthotropic cylindrical shells with a reinforced circular hole,” Int. Appl. Mech., 51, No. 4, 425–433 (2015).

    Article  ADS  Google Scholar 

  11. V. A. Maksimyuk, E. A. Storozhuk, and I. S. Chernyshenko, ”Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review),” Int. Appl. Mech., 48, No. 6, 613–687 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. S. S. Murthy and R. H. Gallagher, ”Anisotropic cylindrical shell element based on discrete Kirchhoff theory,” Int. J. for Numerical Methods in Engineering, 19, No. 12, 1805–1823 (1983).

    Article  ADS  MATH  Google Scholar 

  13. W. D. Pilkey and D. D. Pilkey, Peterson’s Stress Concentration Factors, Wiley & Sons Inc., USA (2008).

    Google Scholar 

  14. M. S. Qatu, E. Asadi, and W. Wang, ”Review of recent literature on static analysis of composite shells: 2000–2010,” Open J. of Comp. Materials, 2, 61–86 (2012).

    Article  Google Scholar 

  15. G. H. Rahimi and R. A. Alashti, “Lower bound to plastic load of cylinders with opening under combined loading,” J. of Thin-Walled Structures, 45, 363–370 (2007).

    Article  Google Scholar 

  16. C. H. Ryu, Y. S. Lee, M. H. Choi, and Y. W. Kim, ”A study on stress analysis of orthotropic composite cylindrical shells with a circular or an elliptical cutout,” KSME Int. J., 18, No. 5, 808–813 (2004).

    Article  Google Scholar 

  17. E. Senocak and A. M. Waas, ”Optimally reinforced cutouts in laminated circular cylindrical shells,” Int. J. Mech. Sci., 38, No. 2, 121–140 (1996).

    Article  MATH  Google Scholar 

  18. V. P. Shevchenko and S. V. Zakora, “Stresses in a spherical shell loaded through rigid inclusions,” Int. Appl. Mech., 51, No. 2, 159–166 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  19. E. A. Storozhuk and I. S. Chernyshenko, ”Stress distribution in physically and geometrically nonlinear thin cylindrical shells with two holes,” Int. Appl. Mech., 41, No. 11, 1280–1287 (2005).

    Article  ADS  MATH  Google Scholar 

  20. E. A. Storozhuk, I. S. Chernyshenko, and I. B. Rudenko, ”Elastoplastic state of spherical shells with cyclically symmetric circular holes,” Int. Appl. Mech., 48, No. 5, 573–582 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Storozhuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 53, No. 4, pp. 44–52, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storozhuk, E.A., Chernyshenko, I.S. & Rudenko, I.B. Inelastic Deformation of a Spherical Shell Weakened by a Number of Circular Holes. Int Appl Mech 53, 390–397 (2017). https://doi.org/10.1007/s10778-017-0823-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-017-0823-5

Keywords

Navigation