Skip to main content
Log in

Effect of Prestresses on the Dispersion of Quasi-Lamb Waves in the System Consisting of an Ideal Liquid Layer and a Compressible Elastic Layer

  • Published:
International Applied Mechanics Aims and scope

The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic–fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Viktorov, Surface Acoustic Waves in Solids [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  2. M. M. Vol’kenshtein and V. M. Levin, “Structure of a Stoneley wave at the interface between a viscous fluid and a solid,” Akust. Zh., 34, No. 4, 608–615 (1988).

    Google Scholar 

  3. A. N. Guz, General Issues, Vol. 1 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

  4. A. N. Guz, Propagation Laws, Vol. 2 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

  5. A. N. Guz, Dynamics of Compressible Viscous Fluid [in Russian], A.S.K., Kyiv (1998).

  6. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

  7. A. N. Guz, A. P. Zhuk, and F. G. Makhort, Waves in a Prestressed Layer [in Russian], Naukova Dumka, Kyiv (1976).

    Google Scholar 

  8. A. P. Zhuk, “Stoneley waves in a prestressed medium,” Prikl. Mekh., 16, No. 1, 113–116 (1980).

    MathSciNet  Google Scholar 

  9. S. Y. Babich, A. N. Guz, and A. P. Zhuk, “Elastic waves in bodies with initial stresses,” Int. Appl. Mech., 15, No. 4, 3–23 (1979).

    MathSciNet  MATH  Google Scholar 

  10. A. M. Bagno, “The dispersion spectrum of a wave process in a system consisting of an ideal fluid layer and a compressible elastic layer,” Int. Appl. Mech., 51, No. 6, 648–654 (2015).

  11. A. M. Bagno and A. N. Guz, “Elastic waves in prestressed bodies interacting with a fluid (survey),” Int. Appl. Mech., 33, No. 6, 435–463 (1997).

    Article  ADS  MATH  Google Scholar 

  12. A. M. Bagno and A. N. Guz, “Effect of prestresses on the dispersion of waves in a system consisting of a viscous liquid layer and compressible elastic layer,” Int. Appl. Mech., 52, No. 4, 333–341 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  13. B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT & E International, 39, No. 7, 525–541 (2006).

    Article  Google Scholar 

  14. A. Gibson and J. Popovics, “Lamb wave basis for impact-echo method analysis,” J. Eng. Mech., 131, No. 4, 438–443 (2005).

    Article  Google Scholar 

  15. A. N. Guz, “Aerohydroelasticity problems for nodies with initial stresses,” Int. Appl. Mech., 16, No. 3, 175–190 (1980).

    ADS  MATH  Google Scholar 

  16. A. N. Guz, “Elastic waves in bodies with initial (residual) stresses,” Int. Appl. Mech., 38, No. 1, 23–59 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. N. Guz, Dynamics of Compressible Viscous Fluid, Cambridge Scientific Publishers, Cambridge (2009).

    MATH  Google Scholar 

  18. A. N. Guz, “On the foundations of the ultrasonic non-destructive determination of stresses in near-the-surface layers of materials. Review,” J. Phys. Sci. Appl., 1, No. 1, 1–15 (2011).

    MathSciNet  Google Scholar 

  19. A. N. Guz, “Ultrasonic nondestructive method for stress analysis of structural members and near-surface layers of materials: Focus on Ukrainian research (review),” Int. Appl. Mech., 50, No. 3, 231–252 (2014).

    Article  ADS  Google Scholar 

  20. A. N. Guz, A. P. Zhuk, and A. M. Bagno, “Dynamics of elastic bodies, solid particles, and fluid parcels in a compressible viscous fluid (review),” Int. Appl. Mech., 52, No. 5, 449–507 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  21. K. Y. Jhang, “Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review,” Int. J. Prec. Eng. Manufact., 10, No. 1, 123–135 (2009).

    Article  Google Scholar 

  22. S. S. Kessler, S. M. Spearing, and C. Soutis, “Damage detection in composite materials using Lamb wave methods,” Smart Mater. Struct., 11, No. 2, 269–279 (2002).

    Article  ADS  Google Scholar 

  23. M. Kobayashi, S. Tang, S. Miura, K. Iwabuchi, S. Oomori, and H. Fujiki, “Ultrasonic nondestructive material evaluation method and study on texture and cross slip effects under simple and pure shear states,” Int. J. Plast., 19, No. 6, 771–804 (2003).

    Article  MATH  Google Scholar 

  24. K. R. Leonard, E. V. Malyarenko, and M. K. Hinders, “Ultrasonic Lamb wave tomography,” Inverse Problems, 18, No. 6, 1795–1808 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. L. Liu and Y. Ju, “A high-efficiency nondestructive method for remote detection and quantitative evaluation of pipe wall thinning using microwaves,” NDT & E International, 44, No. 1, 106–110 (2011).

    Article  Google Scholar 

  26. M. Ottenio, M. Destrade, and R. W. Ogden, “Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid,” Int. J. Non-Lin. Mech., 42, No. 2, 310–320 (2007).

    Article  Google Scholar 

  27. C. Ramadas, K. Balasubramaniam, M. Joshi, and C. V. Krishnamurthy, “Interaction of the primary anti-symmetric Lamb mode (Ao) with symmetric delaminations: numerical and experimental studies,” Smart Mater. Struct., 18, No. 8, 1–7 (2009).

    Article  Google Scholar 

  28. N. S. Rossini, M. Dassisti, K. Y. Benyounis, and A. G. Olabi, “Methods of measuring residual stresses in components,” Materials & Design, 35, March, 572–588 (2012).

    Article  Google Scholar 

  29. M. Spies, “Analytical methods for modeling of ultrasonic nondestructive testing of anisotropic media,” Ultrasonics, 42, No. 1–9, 213–219 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bagno.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 53, No. 2, pp. 24–40, March–April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagno, A.M. Effect of Prestresses on the Dispersion of Quasi-Lamb Waves in the System Consisting of an Ideal Liquid Layer and a Compressible Elastic Layer. Int Appl Mech 53, 139–148 (2017). https://doi.org/10.1007/s10778-017-0799-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-017-0799-1

Keywords

Navigation