Skip to main content
Log in

Influence of the System of Forces on the Stability of Impulsive Mechanical Gyroscopic Systems

  • Published:
International Applied Mechanics Aims and scope

The linear stability of an impulsive mechanical system under dissipative, potential, circulation forces, and gyroscopic forces of high intensity is analyzed. Coefficient conditions for the linear stability of the equilibrium state of the system when the eigendecomposition of the matrix of gyroscopic forces is known explicitly are established. The conditions for the parametric resonance of a plane gyroscopic pendulum to occur are established

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogolyubov and Y. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York (1955).

    Google Scholar 

  2. N. V. Butenin, Yu. I. Neimark, and N. A. Fufaev, Introduction to the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1987).

  3. V. S. Vladimirov, Distributions in Mathematical Physics [in Russian], Nauka, Moscow (1979).

    MATH  Google Scholar 

  4. D. R. Merkin, Gyroscopic Systems [in Russian], Nauka, Moscow (1974).

    MATH  Google Scholar 

  5. D. R. Merkin, Introduction to the Theory of Stability, Texts in Applied Mathematics 24, Springer-Verlag, New York (1997).

    Google Scholar 

  6. I. I. Metelitsyn, “Gyroscopic stabilization revisited,” Dokl. AN SSSR, 86, No. 1, 31–34 (1952).

    Google Scholar 

  7. V. V. Rumyantsev and V. M. Skimel’, “Stability of gyroscopes, gyrostats, and gyroscopic systems,” in: Proc. 2nd All-Union Congr. on Theoretical and Applied Mechanics [in Russian], Issue 2, Nauka, Moscow (1964), pp. 199–216.

  8. V. V. Rumyantsev, “On the influence of gyroscopic forces on the stability of steady-state motion,” J. Appl. Math. Mech., 39, No. 6, 929–938 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. M. Samoilenko, “Averaging method in impulsive systems,” Mat. Fiz., 9, 101–117 (1971).

    Google Scholar 

  10. A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).

    MATH  Google Scholar 

  11. N. G. Chetaev, Stability of Motion: Works on Analytic Mechanics [in Russian], Izd. AN SSSR, Moscow (1962).

  12. I. Z. Shtokalo, “(In)stability criterion for the solutions of linear differential equations with quasi-periodic coefficients,” Mat. Sb., 19 (61), No. 2, 263–286 (1946).

  13. A. Yu. Aleksandrov and A. A. Kosov, “On stability of gyroscopic systems,” Vest. S.-Petersburg Univ., 10, No. 2, 3–13 (2013).

  14. E. I. Bespalova and G. P. Urusova, “Identifying the domains of dynamic instability for inhomogeneous shell systems under periodic loads,” Int. Appl. Mech., 47, No. 2, 186–194 (2011).

    Article  ADS  MATH  Google Scholar 

  15. E. I. Bespalova and G. P. Urusova, “Dynamic instability of shells of revolution with alternating curvature under periodic loading,” Int. Appl. Mech., 49, No. 5, 521–527 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. D. Bruno, A. B. Batkhin, and V. P. Varin, “The stability set of a gyroscopic problems,” Keldysh Institute preprints, 004 (2010).

  17. S. V. Chaikin and A. V. Banshchikov, “On gyroscopic stabilization of the relative equilibriums of oblate axisymmetric gyrostat,” Mat. Model., 25, No. 5, 109–122 (2013).

    MathSciNet  Google Scholar 

  18. V. S. Denisenko and V. I. Slyn’ko, “Fuzzy impulsive stabilization of the upper equilibrium position of a pendulum on a moving foundation,” Int. Appl. Mech., 49, No. 5, 576–587 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. G. B. Filimonikhin, I. I. Filimonikhina, and V. V. Pirogov, “Stability of steady-state motion of an isolated system consisting of a rotating body and two pendulums,” Int. Appl. Mech., 50, No. 4, 459–469 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. V. I. Goncharenko, “Stabilization of the motion of linear systems,” Int. Appl. Mech., 27, No. 5, 523–525 (1991).

    ADS  MathSciNet  MATH  Google Scholar 

  21. I. L. Ivanov and V. I. Slyn’ko, “A stability criterion for autonomous linear time-lagged systems subject to periodic impulsive force,” Int. Appl. Mech., 49, No. 6, 732–742 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. V. N. Koshlyakov, “On structural transformations of dynamical systems with gyroscopic forces,” J. Appl. Math. Mech., 61, No. 5, 774–780 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. V. N. Koshlyakov and V. L. Makarov, “The theory of gyroscopic systems with non-conservative forces,” J. Appl. Math. Mech., 65, No. 4, 681–687 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  24. V. B. Kozlov, “Gyroscopic stabilization and parametric resonance,” J. Appl. Math. Mech., 65, No. 5, 715–721 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  25. B. D. Kubenko and P. S. Koval’chuk, “Stability and nonlinear vibrations of closed cylindrical shells interacting with a fluid flow,” Int. Appl. Mech., 51, No. 1, 12–63 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. Ye. V. Ocheretnyuk and V. I. Slyn’ko, “The conditions for loss of stability of the rotation of a dynamically symmetrical rigid body suspended on a string with parametric perturbations,” J. Appl. Math. Mech., 77, No. 2, 145–150 (2013).

  27. A. Pakniyat, H. Salarieh, and A. Alasty, “Stability analysis of a new class of MEMS gyroscopes with parametric resonance,” Acta Mech., 223, No. 6, 1169–1185 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  28. X. Tai, H. Ma, F. Liu, Y. Liu, and B. Wen, “Stability and steady-state response analysis of a single rub-impact rotor system,” Arch. Appl. Mech., 85, No. 1, 133–148 (2015).

    Article  ADS  Google Scholar 

  29. A. E. Zakrzhevskii and V. S. Khoroshilov, “Dynamics of an unstabilized spacecraft during the deployment of an elastic pantograph structure,” Int. Appl. Mech., 50, No. 3, 341–351(2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Golin’ko.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 52, No. 3, pp. 105–120, May–June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golin’ko, S.I., Slyn’ko, V.I. Influence of the System of Forces on the Stability of Impulsive Mechanical Gyroscopic Systems. Int Appl Mech 52, 301–314 (2016). https://doi.org/10.1007/s10778-016-0753-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-016-0753-7

Keywords

Navigation