A Modified Method for Evaluating the Invariant J-Integral in Finite-Element Models of Prismatic Bodies

Numerical experiments are performed to analyze the invariance and reliability of the results of evaluation of the J-integral by the modified method of reactions in problems of mixed fracture. Bodies with cracks undergoing elastoplastic deformation under static loading are considered. To demonstrate the universality of the method to finite-element schemes, prismatic bodies are considered. This allows using not only conventional finite-element schemes, but also the semi-analytical finite-element method

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. A. Bazhenov, A. I. Gulyar, S. O. Piskunov, A. S. Sakharov, A. A. Shkryl’, Yu. V. Maksimyuk, “Solving linear and nonlinear three-dimensional problems of fracture mechanics by a semi-analytic finite element method. Part 1. Theoretical background and a study of efficiency of fem procedure for solving three-dimensional problems of fracture mechanics,” Strength of Materials, 43, No. 1, 15–24 (2011).

  2. 2.

    V. A. Bazhenov, A. I. Gulyar, S. O. Piskunov, A. S. Sakharov, A. A. Shkryl’, Yu. V. Maksimyuk, “Solving linear and nonlinear three-dimensional problems of fracture mechanics by a semi-analytic finite element method. Part 2. A

  3. 3.

    procedure for computing the invariant J-integral in fem discrete models,” Strength of Materials, 43, No. 2, 122–131 (2011).

  4. 4.

    V. A. Bazhenov, S. O. Piskunov, O. S. Sakharov, O. O. Shkril’, and D. V. Bogdan, “Effective evaluation of the J-integral in problems of elastoplastic deformation,” in: Strength of Materials and Theory of Structures [in Ukrainian], Issue 86, KNUBA, Kyiv (2010), pp. 3–17.

  5. 5.

    V. A. Bazhenov, O. I. Gulyar, S. O. Piskunov, and O. S. Sakharov, Semianalytic Finite-Element Method in Problems of the Fracture of Solids [in Ukrainian], KNUBA, Kyiv (2005).

    Google Scholar 

  6. 6.

    E. M. Morozov and G. P. Nikishkov, Finite-Element Method in Fracture Mechanics [in Russian], Librokom, Moscow (2010).

    Google Scholar 

  7. 7.

    O. S. Sakharov, Yu. V. Shcherbina, O. V. Gondlyakh, and V. I. Sivets’kyi, Integrated System for Modeling Processes and Designing Chemical Equipment [in Ukrainian], Poligraf-Consulting, Kyiv (2006).

    Google Scholar 

  8. 8.

    D. G. Shimkovich, Design of Structures in MSC/NASTRAN for Windows [in Ukrainian], DMK, Moscow (2001).

    Google Scholar 

  9. 9.

    V. A. Bazhenov, A. I. Gulyar, S. O. Piskunov, A. S. Sakharov, and A. A. Shkril’, “Method to evaluate the invariant J-integral in finite-element models of prismatic bodies,” Int. Appl. Mech., 44, No. 12, 1378–1388 (2008).

  10. 10.

    V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Nonclassical problems in the fracture mechanics of composites with interacting cracks,” Int. Appl. Mech., 51, No. 1, 64–84 (2015).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    T. Elguedj, A. Gravouil, and A. Combescure, “Appropriate extended functions for X-FEM simulation of plastic fracture mechanics,” Comput. Methods Appl. Mech. Eng., 195, 501–515 (2006).

    ADS  Article  MATH  Google Scholar 

  12. 12.

    E. Giner, F. Fuenmayor, L. Baeza, and J. Tarancon, “Error estimation for the finite element evaluation of G I and G II in mixed-mode linear elastic fracture mechanics,” Finite Elements in Analysis and Design, 41, 1104–1079 (2005).

    Article  Google Scholar 

  13. 13.

    Z. Jin and R. Dodds, “Crack growth resistance behavior of a functionally graded material: Computational studies,” Eng. Fract. Mech., 71, 1651–1672 (2004).

    Article  Google Scholar 

  14. 14.

    A. A. Kaminsky, M. F. Selivanov, and Yu. A. Chernoivan, “Initial fracture of a viscoelastic isotropic plate with two collinear cracks of equal length,” Int. Appl. Mech., 50, No. 3, 310–320 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    L. P. Khoroshun and O. I. Levchuk, “Stress distribution around cracks in linear hardening materials subject to tension: Plane problem,” Int. Appl. Mech., 50, No. 2, 128–140 (2014).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Kim Yun-Jae, J. Kim, Y. Park, and Kim Young-Jin, “Elastic-plastic fracture mechanics method for finite internal axial surface cracks in cylinders,” Eng. Fract. Mech., 71, 925–944 (2004).

  17. 17.

    Kim Jin-Su, Choi Jae-Boong, Kim Young-Jin, and Park Youn-Won, “Investigation on constraint effect of reactor pressure vessel under pressurized thermal shock,” Nuclear Eng. Design, 219, 197–206 (2002).

    Google Scholar 

  18. 18.

    Kim Yun-Jae, Huh Nam-Su, Park Young-Jae, and Kim Young-Jin, “Elastic-plastic J and COD estimates for axial through-wall cracked pipes,” Int. J. Press. Vess. Piping, 79, 451–464 (2002).

  19. 19.

    V. M. Nazarenko and A. L. Kipnis, “Stress concentration near the tip of an internal semi-infinite crack in a piecewise-homogeneous plane with a nonsmooth interface,” Int. Appl. Mech., 51, No. 4, 443–448 (2015).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    V. G. Popov, “Stress state of a finite elastic cylinder with a circular crack undergoing torsional vibrations,” Int. Appl. Mech., 48, No. 4, 430–437 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    M. Walters, G. Paulino, and R. Dodds, “Interaction integral procedures for 3-D curved cracks including surface tractions,” Eng. Fract. Mech., 72, 1635–1663 (2005).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. Sakharov.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 52, No. 2, pp. 46–54, March–April, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, V.A., Sakharov, A.S., Maksimyuk, Y.V. et al. A Modified Method for Evaluating the Invariant J-Integral in Finite-Element Models of Prismatic Bodies. Int Appl Mech 52, 140–146 (2016). https://doi.org/10.1007/s10778-016-0741-y

Download citation

Keywords

  • elastoplastic problem
  • fracture mechanics
  • invariant J-integral
  • path of integration
  • finite-element method
  • modified method of reactions