International Applied Mechanics

, Volume 52, Issue 2, pp 140–146 | Cite as

A Modified Method for Evaluating the Invariant J-Integral in Finite-Element Models of Prismatic Bodies

  • V. A. Bazhenov
  • A. S. SakharovEmail author
  • Yu. V. Maksimyuk
  • A. A. Shkryl’

Numerical experiments are performed to analyze the invariance and reliability of the results of evaluation of the J-integral by the modified method of reactions in problems of mixed fracture. Bodies with cracks undergoing elastoplastic deformation under static loading are considered. To demonstrate the universality of the method to finite-element schemes, prismatic bodies are considered. This allows using not only conventional finite-element schemes, but also the semi-analytical finite-element method


elastoplastic problem fracture mechanics invariant J-integral path of integration finite-element method modified method of reactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Bazhenov, A. I. Gulyar, S. O. Piskunov, A. S. Sakharov, A. A. Shkryl’, Yu. V. Maksimyuk, “Solving linear and nonlinear three-dimensional problems of fracture mechanics by a semi-analytic finite element method. Part 1. Theoretical background and a study of efficiency of fem procedure for solving three-dimensional problems of fracture mechanics,” Strength of Materials, 43, No. 1, 15–24 (2011).Google Scholar
  2. 2.
    V. A. Bazhenov, A. I. Gulyar, S. O. Piskunov, A. S. Sakharov, A. A. Shkryl’, Yu. V. Maksimyuk, “Solving linear and nonlinear three-dimensional problems of fracture mechanics by a semi-analytic finite element method. Part 2. AGoogle Scholar
  3. 3.
    procedure for computing the invariant J-integral in fem discrete models,” Strength of Materials, 43, No. 2, 122–131 (2011).Google Scholar
  4. 4.
    V. A. Bazhenov, S. O. Piskunov, O. S. Sakharov, O. O. Shkril’, and D. V. Bogdan, “Effective evaluation of the J-integral in problems of elastoplastic deformation,” in: Strength of Materials and Theory of Structures [in Ukrainian], Issue 86, KNUBA, Kyiv (2010), pp. 3–17.Google Scholar
  5. 5.
    V. A. Bazhenov, O. I. Gulyar, S. O. Piskunov, and O. S. Sakharov, Semianalytic Finite-Element Method in Problems of the Fracture of Solids [in Ukrainian], KNUBA, Kyiv (2005).zbMATHGoogle Scholar
  6. 6.
    E. M. Morozov and G. P. Nikishkov, Finite-Element Method in Fracture Mechanics [in Russian], Librokom, Moscow (2010).zbMATHGoogle Scholar
  7. 7.
    O. S. Sakharov, Yu. V. Shcherbina, O. V. Gondlyakh, and V. I. Sivets’kyi, Integrated System for Modeling Processes and Designing Chemical Equipment [in Ukrainian], Poligraf-Consulting, Kyiv (2006).Google Scholar
  8. 8.
    D. G. Shimkovich, Design of Structures in MSC/NASTRAN for Windows [in Ukrainian], DMK, Moscow (2001).Google Scholar
  9. 9.
    V. A. Bazhenov, A. I. Gulyar, S. O. Piskunov, A. S. Sakharov, and A. A. Shkril’, “Method to evaluate the invariant J-integral in finite-element models of prismatic bodies,” Int. Appl. Mech., 44, No. 12, 1378–1388 (2008).Google Scholar
  10. 10.
    V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Nonclassical problems in the fracture mechanics of composites with interacting cracks,” Int. Appl. Mech., 51, No. 1, 64–84 (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    T. Elguedj, A. Gravouil, and A. Combescure, “Appropriate extended functions for X-FEM simulation of plastic fracture mechanics,” Comput. Methods Appl. Mech. Eng., 195, 501–515 (2006).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    E. Giner, F. Fuenmayor, L. Baeza, and J. Tarancon, “Error estimation for the finite element evaluation of G I and G II in mixed-mode linear elastic fracture mechanics,” Finite Elements in Analysis and Design, 41, 1104–1079 (2005).CrossRefGoogle Scholar
  13. 13.
    Z. Jin and R. Dodds, “Crack growth resistance behavior of a functionally graded material: Computational studies,” Eng. Fract. Mech., 71, 1651–1672 (2004).CrossRefGoogle Scholar
  14. 14.
    A. A. Kaminsky, M. F. Selivanov, and Yu. A. Chernoivan, “Initial fracture of a viscoelastic isotropic plate with two collinear cracks of equal length,” Int. Appl. Mech., 50, No. 3, 310–320 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    L. P. Khoroshun and O. I. Levchuk, “Stress distribution around cracks in linear hardening materials subject to tension: Plane problem,” Int. Appl. Mech., 50, No. 2, 128–140 (2014).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kim Yun-Jae, J. Kim, Y. Park, and Kim Young-Jin, “Elastic-plastic fracture mechanics method for finite internal axial surface cracks in cylinders,” Eng. Fract. Mech., 71, 925–944 (2004).Google Scholar
  17. 17.
    Kim Jin-Su, Choi Jae-Boong, Kim Young-Jin, and Park Youn-Won, “Investigation on constraint effect of reactor pressure vessel under pressurized thermal shock,” Nuclear Eng. Design, 219, 197–206 (2002).Google Scholar
  18. 18.
    Kim Yun-Jae, Huh Nam-Su, Park Young-Jae, and Kim Young-Jin, “Elastic-plastic J and COD estimates for axial through-wall cracked pipes,” Int. J. Press. Vess. Piping, 79, 451–464 (2002).Google Scholar
  19. 19.
    V. M. Nazarenko and A. L. Kipnis, “Stress concentration near the tip of an internal semi-infinite crack in a piecewise-homogeneous plane with a nonsmooth interface,” Int. Appl. Mech., 51, No. 4, 443–448 (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    V. G. Popov, “Stress state of a finite elastic cylinder with a circular crack undergoing torsional vibrations,” Int. Appl. Mech., 48, No. 4, 430–437 (2012).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Walters, G. Paulino, and R. Dodds, “Interaction integral procedures for 3-D curved cracks including surface tractions,” Eng. Fract. Mech., 72, 1635–1663 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. A. Bazhenov
    • 1
  • A. S. Sakharov
    • 2
    Email author
  • Yu. V. Maksimyuk
    • 1
  • A. A. Shkryl’
    • 1
  1. 1.Kyiv National University of Construction and ArchitectureKyivUkraine
  2. 2.Research Institute of Structural MechanicsKyivUkraine

Personalised recommendations