Skip to main content
Log in

Finite Integral Transform Method in Static Problems for Inhomogeneous Plates

  • Published:
International Applied Mechanics Aims and scope

A new modification of the finite integral transform method for solving two-dimensional linear boundary-value problems of general form is proposed. This method involves construction of two integral transformations over different variables of the domain such that the kernel of one of them is the transform (map) of the other and vice versa. The method is tested by solving bending problems for homogeneous and inhomogeneous plates

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. M. Grigorenko, A. T. Vasilenko, et. al., Numerical Solution of Boundary-Value Problems of the Statics of Orthotropic Shells with Variable Parameters [in Russian], Naukova Dumka, Kyiv (1975).

    Google Scholar 

  2. N. S. Koshlyakov, E. B. Gliner, and M. M. Smirnov, Differential Equations of Mathematical Physics, North-Holland, Amsterdam; Interscience (Wiley), New York (1964).

  3. Yu. E. Senitskii, Studying the Elastic Deformation of Structural Members under Dynamic Loads with the Finite Integral Transform Method [in Russian], Izd. Saratov. Univ., Saratov (1985).

    Google Scholar 

  4. Yu. E. Senitskii, ”Finite integral transform method: Generalization of the classical procedure of expansion into series of vector eigenfunctions,” Izv. Saratov. Univ., Ser. Mat. Mekh. Inform., No. 3 (1), 61–89 (2011).

  5. E. I. Bespalova and A. B. Kitaygorodskii, ”Advanced Kantorovich’s method for biharmonic problems,” J. Eng. Math., 46, 213–226 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  6. F. V. Chang, ”Bending of uniformly loaded cantilever rectangular plates,” Appl. Math. Mech., 1, 371–383 (1980).

    Article  Google Scholar 

  7. F. V. Chang, ”Bending of a cantilever rectangular plate loaded discontinuously,” Appl. Math. Mech., 2, 403–410 (1981).

    Article  ADS  MATH  Google Scholar 

  8. V. I. Fabrikant, ”Application of generalized images method to contact problems for a transversely isotropic elastic layer on a smooth half-space,” Arch. Appl. Mech., 81, No. 7, 957–974 (2011).

    Article  ADS  MATH  Google Scholar 

  9. E. A. Gasymov, ”Application of the finite integral transform method to solving a mixed problem with integrodifferential conditions for a nonclassical equation,” Diff. Eqs, 47, No. 3, 319–332 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Ya. Grigorenko, O. V. Vovkodav, and S. N. Yaremchenko, “Stress–strain state of nonthin orthotropic spherical shells of variable thickness,” Int. Appl. Mech., 48, No. 1, 80–93 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Ya. M. Grigorenko and S. N. Yaremchenko, “Refined design of longitudinally corrugated cylindrical shells,” Int. Appl. Mech., 48, No. 2, 205–211 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. A. Ya. Grigorenko, A. S. Bergulev, and S. N. Yaremchenko, ”Numerical solution of bending problems for rectangular plates,” Int. Appl. Mech., 49, No. 1, 81–94 (2013).

    Article  ADS  Google Scholar 

  13. R. Li. Yong Zhong, B.Tian, and J. Du, ”Exact bending solutions of orthotropic cantilever thin plates subjected to arbitrary loads,” Int. Appl. Mech., 47, No. 1, 107–119 (2011).

    Article  Google Scholar 

  14. Yu. E. Senitskii, ”The dynamic problem of electroelasticity for a non-homogeneous cylinder,” Appl. Math. Mech., 57, No. 1, 133–139 (1993).

    Article  MathSciNet  Google Scholar 

  15. Yu. E. Senitskii, ”Dynamics of inhomogeneous non-shallow spherical shells,” Mech. Solids, 37, No. 6, 123–133 (2002).

    Google Scholar 

  16. I. N. Sneddon,” Fourier Transforms, McGraw-Hill Book Company Inc., New York (1951).

    Google Scholar 

  17. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill Book Company Inc., New York (1959).

    Google Scholar 

  18. C. I. Tranter, Integral Transforms in Mathematical Physics, Wiley, New York (1951).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Bespalova.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 50, No. 6, pp. 55–68, November–December 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespalova, T.I. Finite Integral Transform Method in Static Problems for Inhomogeneous Plates. Int Appl Mech 50, 651–663 (2014). https://doi.org/10.1007/s10778-014-0663-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-014-0663-5

Keywords

Navigation