Skip to main content
Log in

A Stability Criterion for Autonomous Linear Time-Lagged Systems Subject to Periodic Impulsive Force

  • Published:
International Applied Mechanics Aims and scope

A Lyapunov stability criterion for a linear impulsive time-lagged differential system is formulated using the spectral theory of operators and assuming that the period between pulses is constant and equal to the time lag. Stability conditions for a mechanical system of two coupled pendulums subject to a periodic impulsive force and acceleration field that depends on the previous state of the system are established. The mechanical system is analyzed numerically, its stability domain is drawn and compared to that of the system without time lag

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. M. Berezanskii, G. F. Us, and Z. G. Sheftel’, Functional Analysis [in Russian], Vyshcha Shkola; Kyiv (1990).

  2. A. A. Boichuk, N. A. Perestyuk, and A. M. Samoilenko, “Periodic solutions of impulsive differential systems in critical cases,” Diff. Eq., 27, No. 9, 1516 – 1521 (1991).

    MathSciNet  Google Scholar 

  3. V. S. Vladimirov, Distributions [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  4. F. R. Gantmacher, Matrix Theory [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  5. Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence (1974).

    Google Scholar 

  6. A. A. Kirilov and A. D. Gvishiani, Theorems and Problems in Functional Analysis [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  7. L. A. Lyusternik and L. A. Sobolev, Elements of Functional Analysis, Wiley–Hindustan, Delhi, India, (1974).

    Google Scholar 

  8. M. O. Perestyuk and V. Yu. Slyusarchuk, “Conditions for the existence of nonoscillating solutions of nonlinear differential equations with delay and pulse influence in a Banach space,” Ukr. Math. J., 55, No. 6, 956–965 (2003).

    Article  MathSciNet  Google Scholar 

  9. A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).

    MATH  Google Scholar 

  10. A. M. Samoilenko and N. A. Perestyuk, “Stability of solutions of impulsive differential equations,” Diff. Eq., 13, 1981–1992 (1977).

    Google Scholar 

  11. V. I. Slyn’ko, “Sufficient practical-stability conditions for nonlinear impulsive systems,” Int. Appl. Mech., 40; No. 10, 1171–1174 (2004).

    MathSciNet  Google Scholar 

  12. V. Yu. Slyusarchuk, Stability of Solutions of Differential Equations in Banach Space [in Ukrainian], Vyd. Ukr. Derzh. Univ. Vodn. Gospod. Pryrodokoryst., Rivne (2003).

    Google Scholar 

  13. J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York–Heidelberg–Berlin (1977).

    Book  MATH  Google Scholar 

  14. N. G. Chebotarev and N. N. Meiman, Routh–Hurwitz Problem for Polynomials and Integer Functions, Nauka, Moscow–Leningrad (1949).

    Google Scholar 

  15. A. I. Dvirnyi and V. I. Slyn’ko, “Stability of impulsive nonholonomic mechanical systems,” Int. Appl. Mech., 44, No. 3, 353–360 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  16. Z. E. Filer and A. I. Muzychenko, “Stability of linear mechanical systems with aftereffect,” Int. Appl. Mech., 46, No. 1, 103–112 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. C. S. Hsu, “Nonlinear behavior of multibody systems under impulsive parametric exitation,” in: Proc. Dyn. Multibody Syst. Symp. (Munich, 1977), Berlin (1978), pp. 63–74.

  18. I. L. Ivanov and V. I. Slyn’ko, “Conditions for the stability of an impulsive linear equation with pure delay,” Ukr. Math. J., 61, No. 9, 1417–1427 (2009).

    Article  MathSciNet  Google Scholar 

  19. A. A. Martynyuk and V. I. Slyn’ko, “On stability of motion with respect to two measures under uncertainty,” Int. Appl. Mech., 44, No. 1, 91–100 (2008).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Ivanov.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 49, No. 6, pp. 120–131, November–December 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, I.L., Slyn’ko, V.I. A Stability Criterion for Autonomous Linear Time-Lagged Systems Subject to Periodic Impulsive Force. Int Appl Mech 49, 732–742 (2013). https://doi.org/10.1007/s10778-013-0607-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-013-0607-5

Keywords

Navigation