Modification of the Finite-Element Method to Apply to Problems of the Equilibrium of Bodies Subject to Large Deformations

The analytical expressions for the elements of the Jacobian matrix of the tensor-matrix system of FEM equations that describes the large deformations of an incompressible elastic body are derived using derivatives with respect to a tensor argument. The results are obtained for the general three-dimensional case, including the case of plane strain. The stress–strain state of a hollow square prism turned inside out is determined with a numerical method using the Jacobian matrix

This is a preview of subscription content, access via your institution.


  1. 1.

    D. V. Berezhnoi, V. N. Paimushin, and V. I. Shalashilin, “Studies of quality of geometrically nonlinear elasticity theory for small strains and arbitrary displacements,” Mech. Solids, 44, No. 6, 837–851 (2009).

    Article  Google Scholar 

  2. 2.

    V. V. Galishnikova, “An expansion method for the continuation of a solution at singular points,” Vest. RUDN., Ser. Mat. Inform. Fiz., No. 2, 123–132 (2011).

  3. 3.

    A. N. Guz, Stability of Elastic Bodies Subject to Finite Deformations [in Russian], Naukova Dumka, Kyiv (1973).

    Google Scholar 

  4. 4.

    J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey (1983).

    MATH  Google Scholar 

  5. 5.

    A. A. Zelenina and L. M. Zubov, “One-dimensional deformations of nonlinearly elastic micropolar bodies,” Mech. Solids, 45, No. 4, 575–582 (2010).

    Article  Google Scholar 

  6. 6.

    L. M. Zubov and S. I. Moiseenko, “Stability of the equilibrium of an inverted elastic sphere,” Izv. RAN, Mekh. Tverd. Tela, No. 5, 148–155 (1983).

  7. 7.

    A. I. Lurie, Nonlinear Theory of Elasticity, North-Holland, Amsterdam (1990).

    MATH  Google Scholar 

  8. 8.

    J. T. Oden, Finite Elements of Nonlinear Continua, McGraw-Hill, New York (1971).

    Google Scholar 

  9. 9.

    V. P. Sukhorukov, “Aerodynamic drag of a pipeline laid by turning inside out,” Nauk. Visn. Nats. Girn. Univ., No. 9, 72–74 (2009).

  10. 10.

    J. Aernouts, I. Couckuyt, K. Crombecq, and J. J. J. Dirckx, “Elastic characterization of membranes with a complex shape using point indentation measurements and inverse modelling,” Int. J. Eng. Sci., 48, No. 6, 599–611 (2010).

    Article  Google Scholar 

  11. 11.

    E. Chamberland, A. Fortin, and M. Fortin, “Comparison of the performance of some finite element discretizations for large deformation elasticity problems,” Compos. Struct., 88, No. 11–12, 664–673 (2010).

    Article  Google Scholar 

  12. 12.

    V. V. Chekhov, “Matrix FEM equation describing the large-strain deformation of an incompressible material,” Int. Appl. Mech., 46, No. 10, 1147–1153 (2010).

    MathSciNet  Google Scholar 

  13. 13.

    F. Conrad, K. Ehrmann, J. D. Choo, and B. A. Holden, “Finite element modeling of inverted (inside out) soft contact lenses,” Trans. ASME, J. Medic. Dev., 4, No. 2 (2010).

    Google Scholar 

  14. 14.

    P. B. Goncalves, D. Pamplona, and S. R. X. Lopes, “Finite deformations of an initially stressed cylindrical shell under internal pressure,” Int. J. Mech. Sci., 50, No. 1, 92–103 (2008).

    Article  MATH  Google Scholar 

  15. 15.

    GSL Reference Manual.

  16. 16.

    Y.-M. Huang, “Finite element analysis of tube inversion process with radiused dies,” Int. J. Adv. Manuf. Tech., 26, No. 9–10, 991–998 (2005).

    Article  Google Scholar 

  17. 17.

    G. Karami, N. Grundman, N. Abolfathi, A. Naik, and M. Ziejewski, “A micromechanical hyperelastic modeling of brain white matter under large deformation,” J. Mech. Behavior Biomed. Mater., 2, 243–254 (2009).

    Article  Google Scholar 

  18. 18.

    V. A. Maksimyuk, E. A. Storozhuk, and I. S. Chernyshenko, “Using mesh-based methods to solve nonlinear problems of statics for thin shells,” Int. Appl. Mech., 45, No. 1, 32–56 (2009).

    ADS  Article  MathSciNet  Google Scholar 

  19. 19.

    N. Promma, B. Raka, M. Grediac, E. Toussaint, J.-B. Le Cam, X. Balandraud, and F. Hild, “Application of the virtual fields method to mechanical characterization of elastomeric materials,” Int. J. Solids Struct., 46, No. 3–4, 698–715 (2009).

    Article  MATH  Google Scholar 

  20. 20.

    M. Sasso, G. Palmieri, G. Chiappini, and D. Amodio, “Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods,” Polymer Testing, 27, 995–1004 (2008).

    Article  Google Scholar 

  21. 21.

    N. P. Semenyuk, V. M. Trach, and V. V. Ostapchuk, “Nonlinear axisymmetric deformation of anisotropic spherical shells,” Int. Appl. Mech., 45, No. 10, 1101–1111 (2009).

    ADS  Article  MATH  MathSciNet  Google Scholar 

  22. 22.

    C. A. C. Silva and M. L. Bittencourt, “Structural shape optimization of 3D nearly-incompressible hyperelasticity problems,” Latin Amer. J. Solids Struct., 5, No. 2, 129–156 (2008).

    Google Scholar 

  23. 22.

    Y. Zhu, X. Y. Luo, and R. W. Ogden, “Nonlinear axisymmetric deformations of an elastic tube under external pressure,” Europ. J. Mech., A/Solids, 29, No. 2, 216–229 (2010).

    ADS  Article  MathSciNet  Google Scholar 

  24. 23.

    Th. Zisis, V. I. Zafiropoulou, and A. E. Giannakopoulos, “The adhesive contact of a flat punch on a hyperelastic substrate subject to a pull-out force or a bending moment,” Mech. Mater., 43, No. 1, 1–24 (2011).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. V. Chekhov.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 49, No. 6, pp. 37–43, November–December 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chekhov, V.V. Modification of the Finite-Element Method to Apply to Problems of the Equilibrium of Bodies Subject to Large Deformations. Int Appl Mech 49, 658–664 (2013).

Download citation


  • finite-element method
  • tensor-matrix system of equations
  • large deformations
  • Finger strain measure
  • incompressible elastic body
  • tensor derivative
  • Jacobian matrix
  • hollow square prism turned inside out