Skip to main content
Log in

On Inertial-Navigation System without Angular-Rate Sensors

  • Published:
International Applied Mechanics Aims and scope

Operating algorithms for autonomous inertial-navigation systems without angular-rate sensors are outlined. Systems with 6, 9, and 12 accelerometers are considered. Since six accelerometers are sufficient to measure the angular acceleration, using 9 or 12 accelerometers allows improving the accuracy of determining the angular-rate vector. For this purpose, the additional information provided by the extra accelerometers is used. Correction algorithms are presented. It is shown, by way of examples, that such systems may be effective at high angular rates, when using angular-rate sensors becomes problematic

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. D. Andreev, Inertial Navigation Theory (Autonomous Systems), Report FTD-HC-23-983-74, AD/A-004 663, Foreign Technology Div., Wright-Patterson AFB, Ohio (1974).

  2. V. N. Branets and I. P. Shmyglevskii, Quaternions in Problems of Rigid-Body Orientation [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  3. A. Yu. Ishlinskii, Orientation, Gyroscopes, and Inertial Navigation [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  4. A. I. Lurie, Analytical Mechanics, Springer, Berlin–New York (2002).

    MATH  Google Scholar 

  5. S. M. Onishchenko, Hypercomplex Numbers in Inertial Navigation Theory [in Russian], Naukova Dumka, Kyiv (1983).

    Google Scholar 

  6. I. K. Ahn, H. Ryu, V. B. Larin, and A. A. Tunik, “Integrated navigation, guidance and control systems for small unmanned aerial vehicles,” in: Proc. World Congr. on Aviation in the 21st Century, Kyiv, Ukraine (2003), pp. 14–16.

  7. M. B. Bogdanov, et al., “Integrated inertial/satellite orientation and navigation system on accelerometer-based SINS,” in: Proc. 18th Saint-Petersburg Conf. on Integrated Navigation Systems (2011), pp. 216–218.

  8. A. E. Bryson, Jr., and Ho-Yu-Chi, Applied Optimal Control. Optimization, Estimation and Control, Waltham, Massachusetts (1969).

  9. R. G. Fenton and R. A. Willgoss, “Comparison of methods for determining screw parameters f infinitesimal rigid body motion from position and velocity data,” J. Dynamic Syst. Measur. Control, 112, 711–716 (1990).

    Article  Google Scholar 

  10. R. L. Greenspan, Global Navigation Satellite Systems, Ser. 207, AGARD Lecture, NATO, 1–1, 1–9 (1996).

  11. M. S. Grewal and A. P. Andrews, Kalman Filtering, Prentice Hall, Englewood Cliffs, N.J. (1993).

    MATH  Google Scholar 

  12. V. B. Larin, “On integrating navigation systems,” J. Autom. Inform. Sci., 31, No. 10, 95–98 (1999).

    Google Scholar 

  13. V. B. Larin, “Attitude-determination problems for a rigid body,” Int. Appl. Mech., 37, No. 7, 870–898 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  14. V. B. Larin and A. A. Tunik, “About inertial-satellite navigation system without rate gyros,” Appl. Comp. Math., 9, No. 1, 3–18 (2010).

    MathSciNet  MATH  Google Scholar 

  15. V. B. Larin and A. A. Tunik, “On inertial navigation system error correction,” Int. Appl. Mech., 48, No. 2, 213–223 (2012).

    Article  ADS  Google Scholar 

  16. A. J. Laub and G. R. Shiflett, “A linear algebra approach to the analysis of rigid body velocity from position and velocity data,” Trans. ASME, 105, 92–95 (1983).

    MATH  Google Scholar 

  17. G. Schmidt, INS/GPS Technology Trends, NATO RTO Lecture Ser., RTO-EN-SET-116, Low-Cost Navigation Sensors and Integration Technology, October, 1-1–1-18 (2008).

  18. G. Schmidt and R. Phillips, INS/GPS Integration Architecture Performance Comparison, NATO RTO Lecture Ser., RTOEN-SET-116, Low-Cost Navigation Sensors and Integration Technology, Prague, October, 5-1–5-18 (2008).

  19. C.-W. Tan and S. Park, Design and Error Analysis of Accelerometer-Based Inertial Navigation Systems, California PATH Research Report UCB-ITS-PRR-2002-21, Institute of Transportation Studies, University of California, Berkeley (2002).

  20. J. Wittenburg, Dynamics of Systems of Rigid Bodies, B.G. Teubner, Stuttgart (1977).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Larin.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 49, No. 4, pp. 130–144, July–August 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larin, V.B., Tunik, A.A. On Inertial-Navigation System without Angular-Rate Sensors. Int Appl Mech 49, 488–499 (2013). https://doi.org/10.1007/s10778-013-0582-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-013-0582-x

Keywords

Navigation