Skip to main content
Log in

Deformation and Damage of Composites with Anisotropic Components (Review)

  • Published:
International Applied Mechanics Aims and scope

A statistical model describing the coupled deformation and damage of composites with porous transversely isotropic and orthotropic components is proposed. The mechanism of microdamage of such composites is studied assuming that the microstrength of the material is inhomogeneous. A singlemicrodamage is modeled by an empty quasispherical pore forming in place of a microvolume damaged in accordance with the Huber–Mises failure criterion. The ultimate microstrength is assumed to be a random function of coordinates with Weibull one-point distribution density. The method of conditional moments, the damage balance equations, and the Newton–Raphson method are used to set up an algorithm to calculate the effective deformation characteristics of composite materials depending on macrostrains. The effect of the damage of the material on the macrostress–macrostrain relationship is established. The influence of the mechanical characteristics of the material, the volume fraction and porosity of its components, the geometrical parameters of its structure, and the distribution of microstrength on the damage and macrostress–macrostrain curves of the material is analyzed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Aptukov, “Continuous anisotropic damage model,” in: Deformation and Fracture of Structurally Inhomogeneous Materials [in Russian], AN SSSR. Ural. Otd., Sverdlovsk (1992) pp. 41–52.

    Google Scholar 

  2. V. N. Aptukov and V. L. Belousov, “A model of anisotropic damage for bodies. Communication 1. General relationships,” Strength of Materials, 26, No. 2, 110–115 (1994).

    Google Scholar 

  3. N. N. Afanas’ev, Statistical Theory of the Fatigue Strength of Metals [in Russian], Izd. AN USSR, Kyiv (1953).

    Google Scholar 

  4. V. V. Bolotin, “Stochastic damage models for unidirectional fibrous composites,” Mekh. Komp. Mater., No. 3, 404–420 (1981).

  5. A. A. Vakulenko and L. M. Kachanov, “Continuum theory of medium with cracks,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 4, 159–166 (1971).

  6. G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1985).

    Google Scholar 

  7. S. D. Volkov, Statistical Strength Theory, Gordon & Breach, New York (1962).

    Google Scholar 

  8. V. P. Golub, “Nonlinear mechanics of damage and its applications,” in: Crack Resistance of Materials and Structural Members [in Russian], Naukova Dumka, Kyiv (1980), pp. 19–20.

    Google Scholar 

  9. V. P. Golub, “Creep damage accumulation: Nonlinear models,” Probl. Mashinostr. Avtomatiz., No. 1, 51–58 (1992).

  10. V. P. Golub, “Constitutive equations in nonlinear damage mechanics,” Int. Appl. Mech., 29, No. 10, 794–804 (1993).

    MathSciNet  ADS  Google Scholar 

  11. I. V. Grushetskii, M. Ya. Mikel’son, and V. P. Tamuzs, “Change in stiffness of unidirectionally oriented fibrous composite material due to crushing of fibers,” Mech. Comp. Mater., 18, No. 2, 139–144 (1982).

    Google Scholar 

  12. A. N. Guz, L. P. Khoroshun, G. A. Vanin, et al., Materials Mechanics, Vol. 1 of the three-volume series Mechanics of Composite Materials and Structural Members [in Russian], Naukova Dumka, Kyiv (1982).

    Google Scholar 

  13. N. N. Davidenkov, Fatigue of Metals [in Russian], Izd. AN USSR, Kyiv (1947).

    Google Scholar 

  14. L. M. Kachanov, Fundamentals of Fracture Mechanics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  15. J. A. Collings, Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention, Wiley & Sons, New York (1981).

    Google Scholar 

  16. V. P. Kogaev, Strength Analysis when Stresses are Time Dependent [in Russian], Mashinostroenie, Moscow (1977).

    Google Scholar 

  17. V. I. Kondaurov, “Modeling the processes of damage accumulation and dynamic failure in solids,” in: Studying the Properties of Substances in Extreme Conditions [in Russian], IVTAN, Moscow (1990), pp. 145–152.

    Google Scholar 

  18. T. A. Kontorova and O. A. Timoshenko, “Statistical theory of strength generalized to inhomogeneous stress state,” Zh. Tekhn. Fiz., 19, No. 3, 119–121 (1949).

    Google Scholar 

  19. T. A. Kontorova and Ya. I. Frenkel’, “Statistical theory of the brittle strength of real crystals,” Zh. Tekhn. Fiz., 11, No. 3, 173–183 (1941).

    Google Scholar 

  20. I. M. Kop’ev and A. S. Ovchinskii, Fracture of Fiber-Reinforced Metals [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  21. A. F. Kregers, “Mathematical modeling of the thermal expansion of spatially reinforced composites,” Mech. Comp. Mater., 24, No. 3, 316–325 (1988).

    Google Scholar 

  22. R. M. Christensen, Mechanics of Composite Materials, Wiley, New York (1979).

    Google Scholar 

  23. V. S. Kuksenko, “Diagnostics and forecasting of breakage of large-scale objects,” Phys. Solid State, 47, No. 5, 812–816 (2005).

    ADS  Google Scholar 

  24. S. A. Lurie, “Damage accumulation in composite materials: An entropy model,” in: Abstracts 3rd All-Union Conf. on Mechanics of Inhomogeneous Structures [in Russian], Pt. 2, Lviv, September 17–19 (1991), p. 198.

  25. S. A. Lurie, I. I. Krivolutskaya, and A. R. Vvedenskii, “Accumulation of dispersed damages in composite materials: A micromechanical entropy model,” Tekhn. Ser. Konstr. Komp. Mater., No. 1, 5–12 (1995).

  26. A. N. Guz, L. P. Khoroshun, G. A. Vanin, et al., Materials Mechanics, Vol. 1 of the three-volume series Mechanics of Composite Materials and Structural Members [in Russian], Naukova Dumka, Kyiv (1982).

    Google Scholar 

  27. L. V. Nazarenko, “Influence of microdamages on the deformation properties of anisotropic materials,” Dop. NAN Ukrainy, No. 10, 63–67 (1999).

  28. L. V. Nazarenko, “Deformation of transversely isotropic short-fiber-reinforced composites with microdamaged matrix,” Dokl. NAN Ukrainy, No. 11, 49–54 (2002).

  29. L. V. Nazarenko, “Deformation properties and long-term damage of orthotropic fibrous composites with long-term strength described by a fractional-power function,” Visn. Donetsk. Nats. Univ., Ser. A. Pryrodn. Nauky, No. 2, pt. 1, 94–102 (2008).

  30. L. V. Nazarenko, “Long-term damage of transversely isotropic composites with long-term strength described by a fractional-power function,” Dokl. NAN Ukrainy, No. 4, 62–67 (2008).

  31. L. V. Nazarenko, “Deformation properties of transversely isotropic composites subject to long-term damage when long-term microstrength is described by a stretched exponential function,” Dokl. NAN Ukrainy, No. 5, 75–81 (2008).

  32. L. V. Nazarenko, “Deformation properties and long-term damage of composites with orthotropic inclusions when long-term microstrength is described by a fractional-power function,” Dokl. NAN Ukrainy, No. 8, 72–77 (2008).

  33. L. V. Nazarenko, “Deformation and short-term damage of a material reinforced with orthotropic continuous fibers,” Teor. Prikl. Mekh., 44, 29–38 (2008).

    Google Scholar 

  34. L. V. Nazarenko, “Long-term damage of short-fiber-reinforced composites with orthotropic inclusions and long-term microstrength described by a stretched exponential function,” Dokl. NAN Ukrainy, No. 1, 63–70 (2009).

  35. L. V. Nazarenko, L. P. Khoroshun, V. H. Muller, and B. R. Wille, “Application of the method of conditional moments to investigating the deformation properties of orthotropic composites with fiber microdamages,” Mech. Comp. Mater., 45, No. 1, 11–20 (2009).

    Google Scholar 

  36. L. V. Nazarenko, “Deformation of a fibrous material with orthotropic components and microdamaged fibers,” Dokl. NAN Ukrainy, No. 5, 66–72 (2009).

  37. E. S. Pereverzev, Damage Accumulation Models in Durability Problems [in Russian], Naukova Dumka, Kyiv (1995).

    Google Scholar 

  38. Y. N. Rabotnov, Creep Problems in Structural Members, North-Holland, Amsterdam (1969).

  39. A. R. Rzhanitsin, Theory of Structural Reliability Design [in Russian], Stroiizdat, Moscow (1978).

    Google Scholar 

  40. R. D. Salganik, “Mechanics of bodies with many cracks,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 4, 149–158 (1973).

  41. L. G. Sedrakyan, Statistical Strength Theory [in Russian], Izd. Arm. Inst. Stroimater. Sooruzh., Yerevan (1958).

    Google Scholar 

  42. S. V. Serensen, Fatigue of Materials and Structural Members [in Russian], Vol. 2, Naukova Dumka, Kyiv (1985).

    Google Scholar 

  43. N. K. Snitko, “Structural theory of the strength of metals,” Zh. Tekhn. Fiz., 18, No. 6, 857–864 (1948).

    Google Scholar 

  44. V. P. Tamuzs, “Calculation of elasticity parameters of a material with defects,” Mech. Comp. Mater., 13, No. 5, 702–708 (1977).

    Google Scholar 

  45. V. P. Tamuzs, “Features of the failure of heterogeneous materials,” in: Strength and Failure of Composites [in Russian], Zinatne, Riga (1983), pp. 28–32.

    Google Scholar 

  46. V. P. Tamuzs and V. S. Kuksenko, Microfracture Mechanics of Polymeric Materials [in Russian], Zinatne, Riga (1978).

    Google Scholar 

  47. Ya. B. Fridman, Unified Theory of the Strength of Metals [in Russian], Oborongiz, Moscow (1952).

    Google Scholar 

  48. L. P. Khoroshun, “Methods of theory of random functions in problems of macroscopic properties of microinhomogeneous media,” Int. Appl. Mech., 14, No. 2, 113–124 (1978).

    MathSciNet  ADS  MATH  Google Scholar 

  49. L. P. Khoroshun, “Conditional-moment method in problems of the mechanics of composite materials,” Int. Appl. Mech., 23, No. 10, 989–996 (1987).

    ADS  MATH  Google Scholar 

  50. L. P. Khoroshun, B. P. Maslov, E. N. Shikula, and L. V. Nazarenko, Statistical Mechanics and Effective Properties of Materials, Vol. 3 of the 12-volume series Mechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1993).

    Google Scholar 

  51. B. B. Chechulin, “Statistical brittle strength theory revisited,” Zh. Tekhn. Fiz., 24, No. 2, 41–48 (1954).

    Google Scholar 

  52. E. M. Shevadin, I. A. Razov, R. E. Reshetnikova, and B. N. Serpenikov, “Nature of the scale effect in failure of metals,” DAN SSSR, 113, No. 5, 1057–1060 (1957).

    Google Scholar 

  53. T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  54. J. Baaran, L. Karger, and A. Wetzel, “Stiffness and failure behaviour of folded sandwich cores under combined transverse shear and compression: Proceedings of the Institution of Mechanical Engineers, Part G,” J. Aerospace Eng., 222, No. 2, 179–188 (2008).

    Google Scholar 

  55. M.-H. Berger and D. Jeulin, “Statistical analysis of the failure stresses of ceramic fibers: Dependence of the Weibull parameters on the gauge length, diameter variation and fluctuation of defect density,” J. Mater. Sci., 38, 2913–2923 (2003).

    ADS  Google Scholar 

  56. J. G. Berryman, “Effective medium theories for multicomponent poroelastic composites,” J. Eng. Mech., 132, No. 5, 519–531 (2006).

    Google Scholar 

  57. D. Breysse, “Probabilistic formulation of damage-evolution law of cementitious composites,” J. Eng. Mech., 116, No. 7, 1489–1510 (1990).

    Google Scholar 

  58. B. Budiansky, “On the elastic moduli of some heterogeneous materials,” J. Mech. Phys. Solids, 13, No. 4, 223–227 (1965).

    ADS  Google Scholar 

  59. P. P. Camanho, C. G. Davila, S. T. Pinho, L. Iannucci, and P. Robinson, “Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear,” Composites. Part A: Applied Sci. Manufact., 37, No. 2, 165–176 (2006).

    Google Scholar 

  60. P. P. Castaneda, “The effective mechanical properties of nonlinear isotropic solids,” J. Mech. Phys. Solids, 39, No. 1, 45–71 (1991).

    MathSciNet  ADS  MATH  Google Scholar 

  61. P. P. Castaneda, “Exact second-order estimates for the effective mechanical properties of nonlinear composite materials,” J. Mech Phys. Solids, 44, No. 6, 827–862 (1996).

    MathSciNet  ADS  MATH  Google Scholar 

  62. P. P. Castaneda and P. Suquet, “Nonlinear composites,” Adv. Appl. Mech., 34, 171–302 (1998).

    Google Scholar 

  63. J. L. Chaboche, “Phenomenological aspects of continuum damage mechanics,” in: Proc. 17th Int. Congr. on Theoretical and Applied Mechanics (Grenoble, August 21–27, 1988), Amsterdam (1989), pp. 41–56.

  64. S. Chandrakanth and P.C. Pandey, “An isotropic damage model for ductile material,” Eng. Fract. Mater., 50, No. 4, 457–465 (1995).

    Google Scholar 

  65. C. L. Choy, W. P. Leung, K. W. Kowk, and F. P. Lau, “Elastic moduli and thermal conductivity of injectionmolded short fiber reinforced thermoplastics,” Polym. Comp., 13, 69–80 (1992).

    Google Scholar 

  66. R. M. Christensen, “A critical evaluation for a class of micro-mechanics models,” J. Mech. Phys. Solids, 38, No. 3, 379–404 (1990).

    ADS  Google Scholar 

  67. W. A. Curtin, “Theory of mechanical properties of ceramic-matrix composites,” J. Amer. Ceram. Soc., 74, No. 11, 2837–2845 (1991).

    Google Scholar 

  68. W. A. Curtin, “Tensile strength of fiber-reinforced composites: III Beyond the traditional Weibull model for fiber strength,” J. Compos. Mater., 34, No. 15, 1302–1332 (2000).

    Google Scholar 

  69. G. Cusatis, Z. Bazant, and L. Cedolin, “Confinement-shear lattice model for concrete damage in tension and compression: I. Theory,” Int. J. Eng. Mech., 123, No. 12, 1439–1448 (2003).

    Google Scholar 

  70. F. Desrumaux, F. Meraghni, and L. Benzeggagh, “Generalised Mori–Tanaka scheme to model anisotropic damage using numerical Eshelby tensor,” J. Compos. Mater., 35, No. 7, 603–623 (2001).

    ADS  Google Scholar 

  71. A. M. Freudental and E. F. Gumbel, “Physical and statistical aspects of fatigue,” Adv. Appl. Mech., No. 4, 117–168 (1956).

  72. P. Gudmunson and S. Ostlund, “Numerical verification of a procedure for calculation of elastic constants in micro-cracking composite laminates,” J. Compos. Mater., 26, No. 17, 2480–2492 (1992).

    ADS  Google Scholar 

  73. A. N. Guz, “On one two-level model in the mesomechanics of cracked composites,” Int. Appl. Mech., 39, No. 3, 274–285 (2003).

    ADS  Google Scholar 

  74. R. Hill, “On a class of constitutive relations for nonlinear infinitesimal elasticity,” J. Mech. Phys. Solids, 35, No. 5, 565–576 (1987).

    ADS  MATH  Google Scholar 

  75. M. Kachanov, I. Sevostianov, and B. Shafiro, “Explict cross-property correlations for porous materials with anisotropic microstructures,” J. Mech. Phys. Solids, 49, 1–25 (2001).

    MathSciNet  ADS  MATH  Google Scholar 

  76. P. I. Kattan and G. Z. Voyiadjis, “Micromechanical modeling of damage in uniaxially loaded unidirectional fiber-reinforced composite laminate,” Int. J. Solids Struct., 30, No. 1, 19–36 (1993).

    MATH  Google Scholar 

  77. L. P. Khoroshun, P. V. Leshchenko, and L. V. Nazarenko, “Prediction of the thermoelastic properties of laminar and fibrous composites with orthotropic components,” Int. Appl. Mech., 24, No. 3, 216–223 (1988).

    ADS  MATH  Google Scholar 

  78. L. P. Khoroshun, P. V. Leshchenko, and L. V. Nazarenko, “Effective thermoelastic constants of discretely-fibrous composites with anisotropic components,” Int. Appl. Mech., 24, No. 10, 955–961 (1988).

    ADS  MATH  Google Scholar 

  79. L. P. Khoroshun and L. V. Nazarenko, “Thermoelasticity of orthotropic composites with ellipsoidal inclusions,” Int. Appl. Mech., 26, No. 9, 805–812 (1990).

    ADS  MATH  Google Scholar 

  80. L. P. Khoroshun and L. V. Nazarenko, “Effective elastic properties of composites with disoriented anisotropic ellipsoidal inclusions,” Int. Appl. Mech., 28, No. 12, 801–808 (1992).

    ADS  Google Scholar 

  81. L. P. Khoroshun, “Principles of the micromechanics of material damage. 1. Short-term damage,” Int. App. Mech., 34, No. 10, 1035–1041 (1998).

    Google Scholar 

  82. L. P. Khoroshun, “Micromechanics of short-term thermal microdamageability,” Int. Appl. Mech., 37, No. 9, 1158–1165 (2001).

    ADS  Google Scholar 

  83. L. P. Khoroshun and L. V. Nazarenko, “A model of the short-term damageability of a transversally isotropic material,” Int. Appl. Mech., 37, No. 1, 66–74 (2001).

    MathSciNet  ADS  Google Scholar 

  84. L. P. Khoroshun and L. V. Nazarenko, “Deformation and microdamage of a discrete-fibrous composite with transversely isotropic components,” Int. Appl. Mech., 39, No. 6, 696–703 (2003).

    ADS  Google Scholar 

  85. L. P. Khoroshun, L. V. Nazarenko, W. H. Muller, and R. Wille, “Homogenization of unidirectional and arbitrarily oriented fiber-reinforced materials by the method of conditional moments,” Proc. Appl. Math. Mech., 8, 10451–10452 (2008).

    Google Scholar 

  86. L. P. Khoroshun and L. V. Nazarenko, “Elastic properties and long-term damage of transversely isotropic composites with stress-rupture microstrength described by a fractional-power function,” Int. Appl. Mech., 45, No. 1, 57–65 (2009).

    MathSciNet  ADS  Google Scholar 

  87. L. P. Khoroshun and L. V. Nazarenko, “Long-term damage of discrete-fiber-reinforced composites with transversely isotropic inclusions and stress-rupture microstrength described by an exponential power function,” Int. Appl. Mech., 45, No. 2, 125–133 (2009).

    MathSciNet  ADS  Google Scholar 

  88. L. P. Khoroshun and L. V. Nazarenko, “Coupled processes of deformation and damage of composites with orthotropic inclusions and unbounded rupture-stress function,” Int. Appl. Mech., 45, No. 3, 272–281 (2009).

    MathSciNet  ADS  Google Scholar 

  89. L. P. Khoroshun and L. V. Nazarenko, “Deformation and long-term damage of orthotropic composites with limited stress-rupture microstrength,” Int. Appl. Mech., 45, No. 4, 389–400 (2009).

    MathSciNet  ADS  Google Scholar 

  90. V. Kushch and I. Sevostianov, “Effective elastic moduli tensor of particulate composite with transversely isotropic phases,” Int. J. Solid Struct., 41, 885–906 (2004).

    MATH  Google Scholar 

  91. P. F. Liu and J. Y. Zheng, “Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics,” Mater. Scien. Eng., A, 485, 711–717 (2008).

    Google Scholar 

  92. V. A. Lubarda, D. Krajcinovic, and S. Mastilovic, “Damage model for brittle elastic solids with unequal tensile and compressive strength,” Eng. Fract. Mech., 49, No. 5, 681–697 (1994).

    Google Scholar 

  93. K. Z. Markov, “Elementary micromechanics of heterogeneous media,” in: K. Z. Markov and L. Preziozi (eds.), Heterogeneous Media: Micromechanics Modeling Methods and Simulations, Birkhauser, Boston (2000), pp. 1–162.

    Google Scholar 

  94. G. W. Milton and R. V. Kohn, “Variational bounds on the effective moduli of anisotropic composites,” J. Mech. Phys. Solids, 36, No. 5, 597–629 (1988).

    MathSciNet  ADS  MATH  Google Scholar 

  95. G. W. Milton, The Theory of Composites, Cambridge Univ. Press, Cambridge (2002).

    MATH  Google Scholar 

  96. T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff, Dortrecht, The Netherlands (1987).

    Google Scholar 

  97. O. B. Naimark, “Defect-induced transitions as mechanisms of plasticity and failure in multifield continua,” in: Gianfranco Capriz and Paolo Maria Mariano (eds.), Advances in Multifield Theories for Continua with Substructure, Springer-Verlag, Basel (2004), pp. 75–115.

    Google Scholar 

  98. L. V. Nazarenko, “Elastic properties of materials with ellipsoidal pores,” Int. Appl. Mech., 32, No. 1, 46–53 (1996).

    ADS  MATH  Google Scholar 

  99. L. V. Nazarenko, “Thermoelastic properties of orthotropic porous materials,” Int. Appl. Mech., 33, No. 2, 114–121 (1997).

    Google Scholar 

  100. L. V. Nazarenko, “Three-component discretely-fibrous composites under matrix microdamaging,” J. Comp. Appl. Mech., 6, No. 2, 285–294 (2005).

    MATH  Google Scholar 

  101. L. V. Nazarenko, “Nonlinear deformation of three-component composites,” Proc. Appl. Math. Mech., 6, 405–406 (2006).

    Google Scholar 

  102. L. V. Nazarenko, “Deformation of orthotropic composites with unidirectional ellipsoidal inclusions under matrix microdamages,” Mat. Met. Fiz.-Mekh. Polya, 51, No. 1, 121–130 (2008).

    MATH  Google Scholar 

  103. L. V. Nazarenko, “Deformation and short-term microdamaging of the material strengthened by infinite orthotropic fibers,” Theor. Appl. Mech., 44, 29–38 (2008).

    Google Scholar 

  104. L. V. Nazarenko, “Deformative properties of granular-fiber composites under matrix microdamaging,” Appl. Probl. Math. Mech., 6, 146–153 (2008).

    Google Scholar 

  105. L. V. Nazarenko, L. P. Khoroshun, W. H. Muller, and R. Wille, “Effective thermoelastic properties of discrete-fiber reinforced materials with transversally-isotropic components,” Contin. Mech. Thermodyn., 20, 429–458 (2009).

    MathSciNet  ADS  MATH  Google Scholar 

  106. L. V. Nazarenko, “Deformation of composites with arbitrarily oriented orthotropic fibers under matrix microdamages,” J. Math. Sci., 167, No. 2, 217–231 (2010).

    Google Scholar 

  107. L. V. Nazarenko, “Damageability of material reinforced with unidirectional orthotropic fibers for an exponential-power function of long-term microstrength,” J. Math. Sci., 168, No. 5, 653–664 (2010).

    Google Scholar 

  108. L. V. Nazarenko, L. P. Khoroshun, W. H. Muller, and R. Wille, “Deformation and damaging of composites with transversally-isotropic components under compressive loading,” Proc. Appl. Math. Mech., 10, 129–130 (2010).

    Google Scholar 

  109. S. Nomura and D. L. Ball, “Stiffness reduction due to multiple microcracks in transverse isotropic media,” Eng. Fract. Mech., 48, No. 5, 649–653 (1994).

    ADS  Google Scholar 

  110. R. J. O’Connell and B. B. Budiansky, “Seismic velocities in dry and saturated cracked solids,” J. Geophys. Research, 79, No. 35, 5412–5426 (1974).

    ADS  Google Scholar 

  111. G. Pijaudier-Cabot and Z. P. Bazant, “Nonlocal damage theory,” J. Eng. Mech., 113, No. 10, 1512–1533 (1987).

    Google Scholar 

  112. I. Sevostianov and M. Kachanov, “Explicit cross-property correlations for anisotropic two-phase composite materials,” J. Mech. Phys. Solids, 50, 253–282 (2002).

    MathSciNet  ADS  MATH  Google Scholar 

  113. I. Sevostianov, N. Yilmaz, V. Kushch, and V. Levin, “Effective elastic properties of matrix composites with transversely-isotropic phases,” Int. J. Solids Struct., 42, 455–476 (2005).

    MATH  Google Scholar 

  114. I. Sevostianov and M. Kachanov, “Explicit cross-property correlations for composites with anisotropic inhomogeneities,” J. Mech. Phys. Solids, 55, 2181–2205 (2007).

    MathSciNet  ADS  MATH  Google Scholar 

  115. Shen Wei, “A constitutive relation of elasto-brittle material with damage and its application,” Acta. Mech. Sin., 23, No. 3, 374–378 (1991).

    Google Scholar 

  116. T. Ramesh, “Continuum modelling of damage in ceramic matrix composites,” Mech. Mater., 12, No. 2, 165–180 (1991).

    MathSciNet  Google Scholar 

  117. V. Tamuzs, S. Tarasovs, and U. Vilks, “Delamination properties of translaminar-reinforced composites,” Comp. Sci. Techn., No. 8, 1423–1431 (2003).

    Google Scholar 

  118. S. C. Tan and R. J. Nuismer, “A theory for progressive matrix cracking in composite,” J. Comp. Mater., 23, No. 10, 1029–1047 (1989).

    Google Scholar 

  119. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag, Berlin (2002).

    Google Scholar 

  120. L. J. Walpole, “Elastic behaviour of composite-materials—Theoretical foundations,” Adv. Appl. Mech., 21, 169–242 (1981).

    MATH  Google Scholar 

  121. W. A. Weibull, “A statistical theory of the strength of materials,” Proc. Roy. Swed. Inst. Eng. Res., No. 151, 5–45 (1939).

  122. J. R. Willis, “The overall elastic response of composite materials,” J. Appl. Mech., 50, No. 4B, 1202–1209 (1983).

    ADS  MATH  Google Scholar 

  123. J. R. Willis, “Elasticity theory of composites,” in: Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, Pergamon Press, Oxford (1982), pp. 653–686.

    Google Scholar 

  124. J. R. Willis, Micromechanics and Inhomogeneity, The Toshio Mura Anniversary Volume, Springer, New York (1989).

    Google Scholar 

  125. P. J. Withers, “The determination of the elastic field of an ellipsoidal inclusion in a transversally isotropic medium, and its relevance to composite materials,” Philos. Mag., A, 59, 759–781 (1989).

    ADS  Google Scholar 

  126. F. K. Wittel, F. Kun, B. H. Kroplin, and H. J. Herrmann, “A study of transverse ply cracking using a discrete element method,” Comp. Mat. Sci., 28, No. 3–4, 608–619 (2003).

    Google Scholar 

  127. J. Zhou and Y. Lu, “A damage evolution equations of particle-filled composite materials,” Eng. Fract. Mech., 40, No. 3, 499–506 (1991).

    MathSciNet  Google Scholar 

  128. J. Zhou, Li Aili, and Yu Fangru, “The stress–strain law of elastic body with microcracks,” Acta Mech. Sin., 26, No. 1, 49–59 (1994).

    Google Scholar 

  129. Y. T. Zhu, W. R. Blumenthal, and B. L. Zhou, “Characterizing size dependence of ceramic-fiber strength using modified Weibull distribution,” in: Micromechanics of Advanced Materials, TMS, Warrendale (1995), pp. 493–497.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. P. Khoroshun or L. V. Nazarenko.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 49, No. 4, pp. 14–92, July–August 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoroshun, L.P., Nazarenko, L.V. Deformation and Damage of Composites with Anisotropic Components (Review). Int Appl Mech 49, 388–455 (2013). https://doi.org/10.1007/s10778-013-0578-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-013-0578-6

Keywords

Navigation