Skip to main content
Log in

Stability of elastic bodies under uniform compression (review)

  • Published:
International Applied Mechanics Aims and scope

The main results on the three-dimensional theory of stability of compressible and incompressible hyperelastic simply connected bodies under uniform compression are analyzed. The problems are classified according to the type of loading (dead or follower loads, acting on the whole or a part of the surface) and the type of boundary conditions (the same conditions on the whole surface or different conditions on different parts of the surface). Approaches based on the three-dimensional linearized theory of stability (theory of finite subcritical deformations, first and second theories of small subcritical deformations, incremental-deformation theory, theory of small average rotations) and an approximate approach (linear equations; the loading parameter is approximately included in the boundary conditions) to solving these problems are discussed. Related problems (rock pressure manifestations, folding in the Earth’s crust, wave-like formations on the surface of structural members, stability of laminated composite materials) are briefly commented. Regarding isotropic compressible and incompressible hyperelastic materials, the three-dimensional theory of elastic stability, theory of finite subcritical deformations, and first and second theories of small subcritical deformations are considered. The sufficient conditions for the applicability of the static (Euler’s) method, the sufficient conditions for the stability of equilibrium state, and the general solutions to anti-plane, plane, and spatial problems for homogeneous subcritical states are formulated. The exact solutions, obtained with the above-mentioned general approaches, for compressible and incompressible isotropic bodies (strip, rectangular and circular plates, circular cylinder, sphere, and body of arbitrary geometry) under dead or follower loading are presented. These solutions were obtained for isotropic hyperelastic materials with an arbitrary elastic potential under uniform (hydrostatic, biaxial, or triaxial) pressure. The reviewed results were originally reported in the author’s monograph (A. N. Guz, Stability of Elastic Bodies under Uniform Compression [in Russian], Naukova Dumka, Kyiv (1979)) and articles listed in the References

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Amandosov and K. Sekeev, “Stability of a circular plate under triaxial compression,” in: Abstracts of 5th Kazakhst. Interuniv. Conf., Pt. 2, Nauka, Alma-Ata (1974), pp. 87–88.

  2. A. A. Amandosov, K. M. Stamgaziev, and K. Sekeev, “Elastic stability revisited,” in: Some Problems of Differential Equations [in Russian], Nauka, Alma-Ata (1969), pp. 11–17.

  3. A. A. Amandosov and A. S. Sulbanbekov, “Influence of lateral pressure on the stability of a strip,” in: Abstracts of 5th Kazakhst. Interuniv. Conf., Pt. 2, Nauka, Alma-Ata (1974), pp. 91–93.

  4. G. I. Babat and M. G. Lozinskii, Surface Hardening of Steel with High-Frequency Current [in Russian], Rossiiskaya Knizhnaya Palata, Moscow (1940).

    Google Scholar 

  5. G. M. Bartenev and T. N. Khazanovich, “Law of hyperelastic deformation of cross-linked polymers,” Vysokomolekul. Soed., 2, No. 1, 21–28 (1960).

    Google Scholar 

  6. V. L. Biderman, “Influence of hydrostatic pressure on the stability of rods,” Inzh. Zh. Mekh. Tverd. Tela, No. 4, 192–193 (1968).

  7. V. L. Biderman, “Influence of hydrostatic pressure on stability,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 4, 164–165 (1974).

  8. V. V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability, Pergamon Press, Oxford (1963).

    MATH  Google Scholar 

  9. P. W. Bridgman. The Physics of High Pressure, G. Bell and Sons, London (1931).

    Google Scholar 

  10. G. I. Volokitin, “Stability of a nonlinearly elastic cylinder under side pressure and axial compression,” J. Appl. Math. Mech., 46, No. 2, 219–224 (1982).

    Article  MATH  Google Scholar 

  11. A. E. Green and J. E. Adkins, Large Elastic Deformations and Non-Linear Continuum Mechanics, Oxford Univ. Press, London (1960).

    MATH  Google Scholar 

  12. A. N. Guz, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kyiv (1971).

    Google Scholar 

  13. A. N. Guz, “Stability problems in rock mechanics,” in: Problems of Rock Mechanics [in Russian], Nauka, Alma-Ata (1972), pp. 35–43.

  14. A. N. Guz, Stability of Elastic Bodies under Finite Deformation [in Russian], Naukova Dumka, Kyiv (1973).

    Google Scholar 

  15. A. N. Guz, “Analogies between linearized and linear problems of elasticity,” Dokl. AN SSSR, 212, No. 5, 1089–1091 (1973).

    Google Scholar 

  16. A. N. Guz, “Determining follower loads at small deformations,” Dokl. AN USSR, Ser. A, No. 10, 908–212 (1976).

  17. A. N. Guz, Fundamentals of the Theory of Stability of Mine Workings [in Russian], Naukova Dumka, Kyiv (1977).

    Google Scholar 

  18. A. N. Guz, “Sufficient applicability conditions for Euler’s method for a follower load acting on a part of the surface,” Dokl. AN USSR, Ser. A, No. 10, 901–205 (1977).

  19. A. N. Guz, “Stability of compressible cylinders under hydrostatic pressure,” Dokl. AN USSR, Ser. A, No. 12, 1085–1092 (1977).

  20. A. N. Guz, “Stability of incompressible cylinders under hydrostatic pressure,” Dokl. AN USSR, Ser. A, No. 3, 223–228 (1978).

  21. A. N. Guz, “Stability of a compressible circular plate under hydrostatic pressure,” Dokl. AN USSR, Ser. A, No. 9, 801–805 (1978).

  22. A. N. Guz, “Stability of an incompressible circular plate under hydrostatic pressure,” Dokl. AN USSR, Ser. A, No. 11, 983–986 (1978).

  23. A. N. Guz, “On the stability of elastic compressible bodies under all-around compression,” J. Appl. Mat. Mech., 42, No. 5, 1021–1031 (1978).

    Article  MathSciNet  Google Scholar 

  24. A. N. Guz, Stability of Elastic Bodies under Triaxial Compression [in Russian], Naukova Dumka, Kyiv (1979).

    Google Scholar 

  25. A. N. Guz, Elastic Waves in Prestressed Bodies [in Russian], in 2 vols., Naukova Dumka, Kyiv (1986).

  26. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kyiv (1986).

    Google Scholar 

  27. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

    Google Scholar 

  28. A. N. Guz, Fundamentals of the Fracture Mechanics of Compressed Composites [in Russian], in 2 vols., Litera, Kyiv (2008).

  29. A. N. Guz and I. Yu. Babich, Three-Dimensional Theory of Stability of Rods, Plates, and Shells [in Russian], Vyshcha Shkola, Kyiv (1980).

    Google Scholar 

  30. A. N. Guz and I. Yu. Babich, Three-Dimensional Theory of Stability of Deformable Bodies, Vol. 4 of the six-volume series Three-Dimensional Problems of Elasticity and Plasticity [in Russian], Naukova Dumka, Kyiv (1985).

  31. A. N. Guz and A. V. Navoyan, “Stability of an incompressible rod under uniform lateral pressure,” Izv. AN Arm. SSR, Mekh., No. 5, 63–70 (1978).

  32. A. N. Guz and A. V. Navoyan, “Stability of incompressible plates under uniform lateral pressure,” Izv. AN Arm. SSR, Mekh., No. 1, 62–72 (1979).

  33. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, Introduction to the Mechanics of Nanocomposites [in Russian], Akademperiodika, Kyiv (2010).

    Google Scholar 

  34. A. N. Dinnik, “Rock pressure and support design for vertical mine shafts,” Inzh. Sb., No. 7 (1925).

  35. A. N. Dinnik, A. B. Morgaevskii, and G. N. Savin, “Stress distribution around an underground working,” in: Proc. of Rock Pressure Control Meeting [in Russian], Izd. AN SSSR, Moscow (1938), pp. 7–55.

    Google Scholar 

  36. Z. S. Erzhanov and I. A. Garagash, “Linearized equilibrium equations and stability of a strip under hydrostatic compression,” Izv. AN KazSSR, Ser. Fiz.-Mat., No. 5, 29–36 (1975).

  37. Zh. S. Erzhanov and A. K. Egorov, Theory of Folding in Rock (Mathematical Description) [in Russian], Nauka, Alma-Ata (1968).

    Google Scholar 

  38. Zh. S. Erzhanov, A. K. Egorov, I. A. Garagash, et al., Theory of Folding in the Earth’s Crust [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  39. A. Yu. Ishlinskii, “Stability of the equilibrium of elastic bodies in the context of the mathematical theory of elasticity,” Ukr. Mat. J., 6, No. 2, 140–146 (1954).

    Google Scholar 

  40. A. J. McConnel, Application of Tensor Analysis, Dover, New York (1963).

    Google Scholar 

  41. L. S. Leibenzon, “Application of harmonic functions in stability analysis of spherical and cylindrical shells,” in: Collected Works [in Russian], Vol. 1, Izd. AN SSSR, Moscwo (1951), pp. 110–121.

  42. M. G. Lozinskii, Surface Hardening and Induction Heating of Steel [in Russian], Mashgiz, Moscow (1949).

    Google Scholar 

  43. A. I. Lurie, Theory of Elasticity, Springer, Berlin (1999).

    Google Scholar 

  44. A. I. Lurie, “Theory of elasticity for a semilinear material,” J. Appl. Math. Mech., 32, No. 6, 1068–1085 (1968).

    Article  Google Scholar 

  45. L. V. Nikitin and E. I. Ryzhak, “Stability and instability of a compressed slab pressed to a smooth foundation,” Izv. RAN, Mekh. Tverd. Tela, No. 4, 42–57 (2008).

  46. V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity, Dover, New York (1999).

    Google Scholar 

  47. Ya. L. Nudelman and L. B. Ehrlich, “Surface waves on some machine parts,” Dokl. AN SSSR, 85, No. 5, 971–974 (1952).

    Google Scholar 

  48. I. Yu. Babich, A. N. Guz, and V. N. Chekhov, “The three-dimensional theory of stability of fibrous and laminated materials,” Int. Appl. Mech., 37, No. 9, 1103–1141 (2001).

    Article  Google Scholar 

  49. M. F. Beatty, “Stability of hyperelastic bodies subject to hydroelastic loading,” Int. J. Nonlin. Mech., 5, No. 3, 376–387 (1970).

    Article  Google Scholar 

  50. M. A. Biot, “Sur la stabilite de l’equilibrie elastique. Equations de l’elasticite d’un milieu soumis a tension initiale,” Ann. Soc. Sci., Sect. B, 54, Pt. 1, 91–109 (1934).

  51. M. A. Biot, “Non-linear theory of elasticity and the linearized case for a body under initial stresses,” Phil. Mag., 27, 468–489 (1939).

    Google Scholar 

  52. M. A. Biot, “Folding instability of a layered viscoelastic medium under compression,” Royal Soc. London Proc., Ser. A, 242, No. 1231, 444–454 (1957).

  53. M. A. Biot, “The influence of gravity on the folding of layered viscoelastic medium under compression,” J. Franklin Inst., 267, 221–228 (1959).

    Article  MathSciNet  Google Scholar 

  54. M. A. Biot, Mechanics of Incremental Deformations, John Wiley and Sons, New York (1965).

    Google Scholar 

  55. V. N. Chekhov, “Stability of layered materials with zero in-plane strains,” Int. Appl. Mech., 46, No. 12, 1351–1361 (2010).

    Article  MathSciNet  Google Scholar 

  56. B. Ghosh, “On the folding instability of an elasticoviscous layer under compression,” Czechoslavak. J. Phys., 14, No. 9, 711–716 (1964).

    Article  ADS  Google Scholar 

  57. A. E. Green, R. S. Rivlin, and R. T. Shield, “General theory of small elastic deformations superposed on finite elastic deformations,” Proc. Roy. Soc., Ser. A, 211, No. 1104, 128–154 (1952).

    Google Scholar 

  58. A. E. Green and W. Zerna, Theoretical Elasticity, Univ. Press, Oxford (1954).

    MATH  Google Scholar 

  59. A. N. Guz, “Stability of elastic incompressible objects under isotropic compression,” Int. Appl. Mech., 12, No. 11, 1095–1101 (1976).

    MathSciNet  ADS  MATH  Google Scholar 

  60. A. N. Guz, “Stability of elastic bodies under omnilateral compression,” Int. Appl. Mech., 12, No. 6, 537–554 (1976).

    MathSciNet  ADS  MATH  Google Scholar 

  61. A. N. Guz, “Stability of elastic bodies in omnidirectional compression under dead load,” Int. Appl. Mech., 12, No. 12, 1212–1217 (1976).

    ADS  Google Scholar 

  62. A. N. Guz, “Stability of elastic compressible bodies under uniform lateral pressure,” Int. Appl. Mech., 13, No. 10, 1001–1008 (1977).

    MathSciNet  ADS  MATH  Google Scholar 

  63. A. N. Guz, “Stability of elastic incompressible solids under uniform lateral pressure,” Int. Appl. Mech., 13, No. 11, 1164–1165 (1977).

    ADS  MATH  Google Scholar 

  64. A. N. Guz, “Stability of compressible plates under the influence of uniform lateral pressure,” Int. Appl. Mech., 14, No. 11, 1146–1155 (1978).

    ADS  MATH  Google Scholar 

  65. A. N. Guz, “Stability of elastic incompressible bodies under isotropic compression,” Int. Appl. Mech., 15, No. 1, 1–8 (1979).

    ADS  MATH  Google Scholar 

  66. A. N. Guz, “On three-dimensional linearized theory of stability of laminated rock (Continual theory and model of piecewise-homogeneous medium),” in: Abstracts of 1st European Solid Mechanics Conf., Munchen (1991), pp. 99–100.

  67. A. N. Guz, “Stability of laminated rock (three-dimensional linearized theory),” in: Abstracts of 30th Int. Geological Congr. (Beijing, China, August 4–14, 1996), Vol. 2, Beijing (1996), p. 262.

  68. A. N. Guz, “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 1. Problem statement and general relationships,” Int. Appl. Mech., 34, No. 12, 1175–1186 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  69. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer, Berlin–Heidelberg–New York (1999).

  70. A. N. Guz, “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 2. Cracks of normal separation (mode I),” Int. Appl. Mech., 35, No. 1, 1–12 (1999).

  71. A. N. Guz, “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 3. Transverse-shear (mode II) and longitudinal-shear (mode III) cracks,” Int. Appl. Mech., 35, No. 2, 109–119 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  72. A. N. Guz, “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 4. Wedge problems,” Int. Appl. Mech., 35, No. 3, 225–232 (1999).

    Article  ADS  Google Scholar 

  73. A. N. Guz, “Constructing the three-dimensional theory of stability of deformable bodies,” Int. Appl. Mech., 37, No. 1, 1–37 (2001).

    Article  Google Scholar 

  74. A. N. Guz, “Elastic waves in bodies with initial (residual) stresses,” Int. Appl. Mech., 38, No. 1, 23–59 (2002).

    Article  MathSciNet  Google Scholar 

  75. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 1. Problem formulation and basic relations,” Int. Appl. Mech., 38, No. 4, 423–431 (2002).

    Article  Google Scholar 

  76. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 2. Exact solution. The case of unequal roots,” Int. Appl. Mech., 38, No. 5, 548–555 (2002).

    Article  Google Scholar 

  77. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 2. Exact solution. The case of equal roots,” Int. Appl. Mech., 38, No. 6, 693–700 (2002).

  78. A. N. Guz, “Critical phenomena in cracking of the interface between two prestressed materials. 4. Exact solution. The combined case of unequal and equal roots,” Int. Appl. Mech., 38, No. 7, 806–814 (2002).

    Article  Google Scholar 

  79. A. N. Guz, “Establishing the fundamentals of the theory of stability of mine workings,” Int. Appl. Mech., 39, No. 1, 20–48 (2003).

    Article  ADS  Google Scholar 

  80. A. N. Guz, “Design models in linearized solid mechanics,” Int. Appl. Mech., 40, No. 5, 506–516 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  81. A. N. Guz, “Setting up a theory of stability of fibrous and laminated composites,” Int. Appl. Mech., 45, No. 6, 587–613 (2009).

    Article  ADS  Google Scholar 

  82. A. N. Guz and V. N. Chekhov, “Linearized theory of folding in the interior of the Earth’s crust,” Int. Appl. Mech., 11, No. 1, 1–10 (1975).

    ADS  Google Scholar 

  83. A. N. Guz and V. N. Chekhov, “Stability of laminated composites,” Appl. Mech. Reviews (Special Issue: Micromechanics of composite materials: Focus on Ukrainian research, Guest Editor – A. N. Guz, 45, No. 2, 13–101 (1992)), 45, No. 2, 81–101 (1992).

  84. A. N. Guz and V. N. Chekhov, “Problems of folding in the Earth’s stratified crust,” Int. Appl. Mech., 43, No. 2, 127–159 (2007).

    Article  ADS  Google Scholar 

  85. A. N. Guz and I. A. Guz, “Analytical solution of stability problem for two composite half-planes compressed along interfacial cracks,” Composites. Part B, 31, No. 5, 405–418 (2000).

    Article  Google Scholar 

  86. A. N. Guz and I. A. Guz, “The stability of the interface between two bodies compressed along interfacial cracks. 1. Exact solution for the case of unequal roots,” Int. Appl. Mech., 36, No. 4, 482–491 (2000).

    Google Scholar 

  87. A. N. Guz and I. A. Guz, “The stability of the interface between two bodies compressed along interfacial cracks. 2. Exact solution for the case of equal roots,” Int. Appl. Mech., 36, No. 5, 615–622 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  88. A. N. Guz and I. A. Guz, “The stability of the interface between two bodies compressed along interfacial cracks. 3. Exact solution for the combined case of equal and unequal roots,” Int. Appl. Mech., 36, No. 6, 759–768 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  89. A. N. Guz, V. P. Korzh, and V. N. Chekhov, “Stability of a laminar half-plane of regular structure under uniform compression,” Int. Appl. Mech., 27, No. 8, 744–749 (1991).

    ADS  MATH  Google Scholar 

  90. A. N. Guz, E. A. Tkachenko, and V. N. Chekhov, “Stability of layered antifriction coating,” Int. Appl. Mech., 32, No. 9, 669–678 (1996).

    Article  ADS  MATH  Google Scholar 

  91. F. John, “Plane strain problems for a perfectly elastic material of harmonic type,” Commun. Pure Appl. Math., 13, No. 2, 239–296 (1960).

    Article  MATH  Google Scholar 

  92. R. Kappus, “Zur elastizitatstheorie endlicher Verschiebungen,” ZAMM, 19, No. 5, 271–285 (1939).

    Article  MathSciNet  Google Scholar 

  93. R. Kappus, “Zur elastizitatstheorie endlicher Verschiebungen,” ZAMM, 19, No. 6, 344–361 (1939).

    Article  MathSciNet  MATH  Google Scholar 

  94. A. D. Kerr, “On the instability of elastic solids,” in: Proc. 4th U.S. Nation. Congr. Appl. Mech. (1962), pp. 647–656.

  95. A. D. Kerr and S. Tang, “The effect of lateral hydrostatic pressure on the stability of elastic solids particularly beams and plates,” Trans ASME, Ser. E, J. Appl. Mech., 33, No. 3, 617–627 (1966).

    Article  ADS  Google Scholar 

  96. A. D. Kerr and S. Tang, “Instability of rectangular elastic solid,” Acta Mech., 4, No. 1, 43–63 (1967).

    Article  MATH  Google Scholar 

  97. M. Mooney, “A theory of large elastic deformation,” J. Appl. Phys., 11, 582–592 (1940).

    Article  ADS  MATH  Google Scholar 

  98. F. D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley, New York (1951).

    MATH  Google Scholar 

  99. I. P. Peterson, “Axially loaded column subjected to lateral pressure,” AIAA J., 1, No. 6, 1458–1458 (1963).

    Article  Google Scholar 

  100. R. H. Plaut and Z. Mroz, “Unidirectional buckling of a pinned elastica with external pressure,” Int. J. Solids Struct., 29, No. 16, 2091–2100 (1992).

    Article  MATH  Google Scholar 

  101. E. A. Tkachenko, “Effect of geometric and mechanical characteristic of antifriction coating on their stability,” Int. Appl. Mech., 35, No. 9, 956–961 (1999).

    Article  ADS  Google Scholar 

  102. E. A. Tkachenko and V. N. Chekhov, “Stability of laminated coating under elastoplastic deformation,” Int. Appl. Mech., 37, No. 3, 361–368 (2001).

    Article  Google Scholar 

  103. E. A. Tkachenko and V. N. Chekhov, “Stability of layered coating under biaxial thermomechanical loading,” Int. Appl. Mech., 45, No. 12, 1349–1358 (2009).

    Article  ADS  Google Scholar 

  104. L. R. G. Treloar, “Large elastic deformations in rubberlike materials,” in: Proc. IUTAM Colloq., Madrid (1955), pp. 208–217.

  105. J. L. Nowinski, “On the elastic stability of thick columns,”Acta Mech., 7/4, 279–286 (1969).

    Google Scholar 

  106. Zh. S. Erzhanov, “A. N. Dinnik’s fundamental studies on rock mechanics,” Int. Appl. Mech., 2, No. 8, 51–54 (1966).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Guz.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 48, No. 3, pp. 3–78, May–June 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guz, A.N. Stability of elastic bodies under uniform compression (review). Int Appl Mech 48, 241–293 (2012). https://doi.org/10.1007/s10778-012-0520-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-012-0520-3

Keywords

Navigation