Skip to main content
Log in

Determining the natural frequencies of an elastic parallelepiped by the advanced Kantorovich–Vlasov method

  • Published:
International Applied Mechanics Aims and scope

An approach to calculate the natural frequencies of an elastic parallelepiped with different boundary conditions is proposed. The approach rationally combines the inverse-iteration method of successive approximations and the advanced Kantorovich–Vlasov method. The efficiency of the approach (the accuracy of the results and the number of approximating functions) is demonstrated against the Ritz method with different basis systems, including B-splines. The dependence of the lower frequencies of a three-dimensional cantilever beam on its cross-sectional dimensions is examined

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Zhilin and T. P. Il’icheva, ”Spectra and modes of vibrations based on the three-dimensional theory of elasticity and plate theory,” Izv. AN USSR, Mekh. Tverd. Tela, No. 2, 94–103 (1980).

  2. Von L. Collatz, Eigenvalue Problems with Engineering Applications [in German], Akad. Verlagsges., Leipzig (1963).

    Google Scholar 

  3. R. C. Barta, L. F. Qian, and L. M. Chen, ”Natural frequencies of thick square plates made of orthotropic, trigonal, monoclinic, hexagonal and triclinic materials,” J. Sound Vibr., 270, No. 4–5, 1074–1086 (2004).

    ADS  Google Scholar 

  4. E. I. Bespalova, ”Solving stationary problems for shallow shells by a generalized Kantorovich–Vlasov method,” Int.Appl. Mech., 44, No. 11, 1283–1293 (2008).

    Article  ADS  Google Scholar 

  5. E. I. Bespalova and G. P. Urusova, ”Solving the torsion problem for anisotropic prism by the advanced Kantorovich–Vlasov method,” Int. Appl. Mech., 46, No. 2, 149–158 (2010).

    Article  ADS  Google Scholar 

  6. Ya. M. Grigorenko, O. A. Avramenko, and S. N. Yaremchenko, ”Spline-approximation solution of two-dimensional problems of statics for orthotropic conical shells in a refined formulation,” Int. Appl. Mech., 43, No. 11, 1218–1227 (2007).

    Article  ADS  Google Scholar 

  7. A. Ya. Grigorenko and T. L. Efimova, ”Using spline-approximation to solve problems of axisymmetric free vibration of thick-walled orthotropic cylinders,” Int. Appl. Mech., 44, No. 10, 1137–1147 (2008).

    Article  ADS  Google Scholar 

  8. A. Ya. Grigorenko and S. A. Maltsev, ”Natural vibrations of thin conical panels of variable thickness,” Int. Appl. Mech., 45, No. 11, 1221–1231 (2009).

    Article  ADS  Google Scholar 

  9. Ya. M. Grigorenko, N. N. Kryukov, and N. S. Yakovenko, ”Using spline functions to solve boundary-value problems for laminated orthotropic trapezoidal plates of variable thickness,” Int. Appl. Mech., 41, No. 4, 413–420 (2005).

    Article  ADS  Google Scholar 

  10. A. W. Leissa and Z. Zhang, ”On the three-dimensional vibrations of cantilevered rectangular parallelepiped,” J. Acoust. Soc. Amer., 73, 2013–2021 (1983).

    Article  ADS  MATH  Google Scholar 

  11. M. Levinson, ”Free vibrations of simply supported rectangular plates: An exact elasticity solution,” J. Sound Vibr., 98, 289–298 (1985).

    Article  ADS  MATH  Google Scholar 

  12. K. M. Liew, K. C. Hung, and K. M. Lim, ”A continuum three-dimensional vibration analysis of thick rectangular plates,” Int. J. Solids Struct., 30, 3357–3379 (1993).

    Article  MATH  Google Scholar 

  13. W. C. Lim, ”Three-dimensional vibration analysis of a cantilevered parallelepiped: exact and approximate solutions,” J. Acoust. Soc. Amer., 106, 3375–3381 (1999).

    Article  ADS  Google Scholar 

  14. O. G. McGee and A. W. Leissa, ”Three-dimensional free vibrations of thick skewed cantilevered plate,” J. Sound Vibr., 144, 305–322 (1991).

    Article  ADS  Google Scholar 

  15. H. Nagino, T. Mikami, and T. Mizusawa, ”Three-dimensional free vibration analysis of isotropic rectangular plates using the B-spline Ritz method,” J. Sound Vibr., 317, No. 1–2, 329–353 (2008).

    Article  ADS  Google Scholar 

  16. S. Srinivas, C. V. Joga Rao, and A. K. Rao, ”An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates,” J. Sound Vibr., 12, 187–199 (1970).

    Article  ADS  MATH  Google Scholar 

  17. D. Zhou, Y. K. Cheung, F. T. K. Au, and S. H. Lo, ”Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method,” Int. J. Solids Struct., 39, 6339–6353 (2002).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Bespalova.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 47, No. 4, pp. 76–88, July 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bespalova, E.I. Determining the natural frequencies of an elastic parallelepiped by the advanced Kantorovich–Vlasov method. Int Appl Mech 47, 410–421 (2011). https://doi.org/10.1007/s10778-011-0467-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-011-0467-9

Keywords

Navigation