Skip to main content
Log in

An asymptotic linear thin-walled rod model coupling twist and bending

  • Published:
International Applied Mechanics Aims and scope

A linear one-dimensional model for thin-walled rods with open strongly curved cross-section, obtained by asymptotic methods is presented. A dimensional analysis of the linear three-dimensional equilibrium equations yields dimensionless numbers that reflect the geometry of the structure and the level of applied forces. For a given force level, the order of magnitude of the displacements and the corresponding one-dimensional model are deduced by asymptotic expansions. In the case of low force levels, we obtain a one-dimensional model whose kinematics, traction, and twist equations correspond to the Vlassov ones. However, this model couples twist and bending effects in the bending equations, unlike the Vlassov model where the twist angle and the bending displacement are uncoupled

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Caillerie, “Thin elastic and periodic plates,” Math. Meth. Appl. Sci., 6, 159–191 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  2. P. G. Ciarlet and P. Destuynder, “Justification of the two-dimensional linear plate model,” J. Mécanique, 18, 315–344 (1979).

    MathSciNet  MATH  Google Scholar 

  3. A. Cimetière, G. Geymonat, H. Le Dret, A. Raoult, and Z. Tutek, “Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender roads,” J. Elasticity, 19, 111–161 (1998).

    Article  Google Scholar 

  4. A. Cimetière, A. Hamdouni, and O. Millet, “Le modèle linéaire usuel de plaque déduit de l’élasticité non linéaire tridimensionnelle,” C. R. Acad. Sci. Paris, Série II b, 326, 159–162 (1998).

    ADS  MATH  Google Scholar 

  5. J. M. Davies and P. Leach, “First-order generalised beam theory,” J. Constr. Steel Res., 31, 187–220 (1994).

    Article  Google Scholar 

  6. J. M. Davies and P. Leach, “Second-order generalised beam theory,” J. Constr. Steel Res., 31, 221–241 (1994).

    Article  Google Scholar 

  7. P. Destuynder, “A classification of thin shell theories,” Acta Appl. Math., 4, 15–63 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Elamri, A. Hamdouni, and O. Millet, “Le modèle linéaire de Novozhilov-Donnell déduit de l’élasticité non linéaire tridimensionnelle,” C. R. Acad. Sci. Paris, Série II b, 327, 1285–1290 (1999).

    ADS  MATH  Google Scholar 

  9. G. Geymonat, “Sur la commutativité des passages à la limite en théorie asymptotique des poutres composites,” C. R. Acad. Sci., Série II, 305, 225–228 (1987).

    MathSciNet  MATH  Google Scholar 

  10. A. Gjelsvik, The Theory of Thin-Walled Bars, John Wiley & Sons, N.Y. (1981).

    MATH  Google Scholar 

  11. A. L. Goldenveizer, “Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity,” Prikl. Math. Mech., 27, 593–608 (1963).

    MathSciNet  Google Scholar 

  12. L. Grillet, A. Hamdouni, and O. Millet, “An asymptotic non-linear model for thin-walled rods,” C. R. Acad. Sci., Paris, Série Mécanique, 332, 123–128 (2004).

    MATH  Google Scholar 

  13. L. Grillet, A. Hamdouni, and O. Millet, “Justification of the kinematic assumptions for thin-walled rods with shallow profile,” C. R. Mécanique, 333, 493–489 (2005).

    Article  MATH  Google Scholar 

  14. V. I. Gulyaev, P. Z. Lugovoi, V. V. Gaidaichuk, I. L. Solov’ev, and I. V. Gorbunovich, “Effect of the length of a rotating drillstring on the stability of its quasistatic equilibrium,” Int. Appl. Mech., 43, No. 9, 1017–1023 (2007).

    Article  ADS  Google Scholar 

  15. V. I. Gulyaev, P. Z. Lugovoi, S. N. Khudolii, and L. V. Glovach, “Theoretical identification of forces resisting longitudinal movement of drillstring in curved wells,” Int. Appl. Mech., 43, No. 11, 1248–1255 (2007).

    Article  ADS  Google Scholar 

  16. A. Hamdouni and O. Millet, “Classification of thin shell models deduced from the nonlinear three-dimensional elasticity. Part I: The shallow shells,” Arch. Mech., 55(2), 135–175 (2003).

    MathSciNet  MATH  Google Scholar 

  17. A. Hamdouni and O. Millet, “Classification of thin shell models deduced from the nonlinear three-dimensional elasticity. Part II: The strongly curved shells,” Arch. Mech., 55(2), 177–219 (2003).

    MathSciNet  MATH  Google Scholar 

  18. A., Hamdouni and O. Millet, “An asymptotic non-linear model for thin-walled rods with strongly curved open cross-section,” Int. J. Non-Linear Mech., 41, 396–416 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. T. Lewinski, “Effective models of composite periodic plates. I. Asymptotic solution,” Int. J. Solids Struct., 27(9), 1155–1172 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Madani, “Étude des structures élastiques élancées à rayon de courbure faiblement variable: une classification de modèles asymptotiques,” C. R. Acad. Sci., Série II b, 326, 605–608 (1998).

    ADS  MATH  Google Scholar 

  21. J.-J. Marigo, H. Ghidouche, and Z. Sedkaoui, “Des poutres flexibles aux fils extensibles: une hierarchie de modèles asymptotiques,” C. R. Acad. Sci., Série II b, 326, 79–84 (1998).

    ADS  MATH  Google Scholar 

  22. J.-J. Marigo and K. Madani, “Quelques modèles d’anneaux élastiques suivant les types de chargement,” C. R. Acad. Sci., Série II b, 326, 805–810 (1998).

    ADS  MATH  Google Scholar 

  23. Ch. Massonnet, “A new approach (including shear lag) to elementary mechanics of materials,” Int. J. Solids Struct., 19(1), 33–54 (1983).

    Article  MATH  Google Scholar 

  24. O. Millet, A. Hamdouni, and A. Cimetière, “Justification du modèle bidimensionnel linéaire de plaque par développement asymptotique de l’équation de Navier,” C. R. Acad. Sci., Paris, Série II b, 324, 289–292 (1997).

    ADS  MATH  Google Scholar 

  25. O. Millet, A. Hamdouni, and A. Cimetière, “Justification du modèle bidimensionnel non linéaire de plaque par développement asymptotique des équations d’équilibre,” C. R. Acad. Sci., Paris, Série II b, 324, 349–354 (1997).

    ADS  MATH  Google Scholar 

  26. O. Millet, A. Hamdouni, and A. Cimetière, “Construction d’un modèle eulérien de plaques en grands déplacements par méthode asymptotique,” C. R. Acad. Sci., Paris, Série II b, 325, 257–261 (1997).

    ADS  MATH  Google Scholar 

  27. O. Millet, A. Hamdouni, and A. Cimetière, “Dimensional analysis and asymptotic expansions of the equilibrium equations in nonlinear elasticity. Part I: The membrane model,” Arch. Mech., 50(6), 853–873 (1998).

    Google Scholar 

  28. O. Millet, A. Hamdouni, and A. Cimetière, “Dimensional analysis and asymptotic expansions of the equilibrium equations in nonlinear elasticity. Part II: The Von Karman Model,” Arch. Mech., 50(6), 975–1001 (1998).

    MathSciNet  Google Scholar 

  29. O. Millet, A. Hamdouni, and A. Cimetière, “A classification of thin plate models by asymptotic expansion of nonlinear three-dimensional equilibrium equations,” Int. J. Non-Linear Mech., 36, 165–186 (2001).

    Article  MATH  Google Scholar 

  30. O. Millet, A. Hamdouni, and A. Cimetière, “An Eulerian approach of membrane theory for large displacements,” Int. J. Non-Linear Mech., 38, 1403–1420 (2003).

    Article  MATH  Google Scholar 

  31. O. Millet, A. Cimetière, and A. Hamdouni, “An asymptotic elastic-plastic plate model for moderate displacements and strong strain hardening,” Eur. J. Mech. A/Solids, 22, 369–384 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Prokic and D. Lukic, “Dynamic behavior of braced thin-walled beams,” Int. Appl. Mech., 43(11), 1290–1303 (2007).

    Article  ADS  Google Scholar 

  33. A. Rigolot, “Déplacements finis et petites déformations des poutres droites: Analyse asymptotique de la solution à grande distance des bases,” J. Mécanique appliquée, 1(2), 175–206 (1977).

    MathSciNet  Google Scholar 

  34. J. M. Rodriguez and J. M. Viaño, “Asymptotic analysis of Poisson’s equation in a thin domain. Application to thin-walled elastic beams,” in: P. G. Ciarlet, L. Trabucho, and J. M. Viano (eds.), Asymptotic Methods for Elastic Structures, Walter de Gruyer, Berlin (1995), pp. 181–193.

    Google Scholar 

  35. J. M. Rodriguez and J. M. Viaño, “Asymptotic general bending and torsion models for thin-walled elastic beams,” in: P. G. Ciarlet, L. Trabucho, and J. M. Viano (eds.), Asymptotic Methods for Elastic Structures, Walter de Gruyer, Berlin (1995), pp. 255–274.

    Google Scholar 

  36. J. M. Rodriguez and J. M. Viaño, “Asymptotic derivation of a general linear model for thin-walled elastic rods,” Comput. Meth. Appl. Mech. Eng., 147, 287–321 (1997).

    Article  MATH  Google Scholar 

  37. Y. K. Rudavskii and I. A. Vikovich, “Forced flexural-and-torsional vibrations of a cantilever beam of constant cross section,” Int. Appl. Mech., 43(8), 129–1303 (2007).

    Article  Google Scholar 

  38. E. Sanchez-Palencia, “Statique et dynamique des coques minces, I. Cas de flexion pure non inhibée”, C. R. Acad. Sci., Paris, Série I, 309, 411–417 (1989).

    MathSciNet  MATH  Google Scholar 

  39. E. Sanchez-Palencia, “Statique et dynamique des coques minces, II. Cas de flexion pure inhibée. Approximation membranaire,” C. R. Acad. Sci., Paris, Série I, 309, 531–537 (1989).

    MathSciNet  MATH  Google Scholar 

  40. E. Sanchez-Palencia, “Passage à la limite de l’élasticité tridimensionnelle à la théorie asymptotique des coques minces,” C. R. Acad. Sci., Paris, Série II b, 311, 909–916 (1990).

    MathSciNet  MATH  Google Scholar 

  41. J. Sanchez-Hubert and E. Sanchez-Palencia, Coques Élastiques Minces. Propriétés Asymptotiques, Masson, Paris (1997).

    MATH  Google Scholar 

  42. J. Sanchez-Hubert and E. Sanchez-Palencia, “Statics of curved rods on account of torsion and flexion,” Eur. J. Mech. A/Solids, 18, 365–390 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. J. Saucha and J. Rados, “A critical review of Vlassov’s general theory of stability of in-plane bending of thin-walled elastic beams,” Meccanica, 6, 177–190 (2001).

    Article  MathSciNet  Google Scholar 

  44. L. Trabucho and J. M. Viaño, “Existence and characterization of higher-order terms in an asymptotic expansion method for linearized elastic beams,” Asympt. Anal., 2, 223–255 (1989).

    MATH  Google Scholar 

  45. L. Trabucho and J. M. Viaño, “A new approach of Timoshenko’s beam theory by asymptotic expansion method,” Math. Mod. Numer. Anal., 5, 651–680 (1990).

    Google Scholar 

  46. L. Trabucho and J. M. Viaño, “Mathematical modelling of rods,” in: P. G. Ciarlet and J.-L. Lions (eds.), Handbook of Numerical Analysis, Vol. IV, North Holland, Amsterdam (1996), pp. 487–974.

    Google Scholar 

  47. V. Z. Vlassov, Pièces Longues en Voiles Minces, Eyrolles, Paris (1962).

    Google Scholar 

  48. L. Zhang and G. S. Tong, “Elastic flexural-torsional buckling of thin-walled cantilevers,” Thin-Wall. Struct., 46, 27–37 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Millet.

Additional information

Published in Prikladnaya Mekhanika, Vol. 46, No. 9, pp. 123–143, September 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdouni, A., Millet, O. An asymptotic linear thin-walled rod model coupling twist and bending. Int Appl Mech 46, 1072–1092 (2011). https://doi.org/10.1007/s10778-011-0400-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-011-0400-2

Keywords

Navigation