Skip to main content
Log in

Conditions for pure rolling of a heavy cylinder along a brachistochrone

  • Published:
International Applied Mechanics Aims and scope

Algebraic equations for the line of steepest descent of a cylinder are derived in parametric form. Conditions for rolling without slipping and separation of the cylinder along a brachistochrone are established based on the equations of motion with constraint reaction. The important conclusion is drawn that the center of mass of a cylinder moving along a brachistochrone describes a cycloid

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bukhgol’ts, Basic Course in Theoretical Mechanics [in Russian], Part 1, Nauka, Moscow (1969).

    Google Scholar 

  2. V. P. Legeza, “Dynamics of vibroprotective systems with roller dampers of low-frequency vibrations,” Strength of Materials, 36, No. 2, 185–194 (2004).

    Article  Google Scholar 

  3. V. P. Legeza, Models and Method for the Vibration Protection of Dynamic Systems with Roller Damping Devices [in Ukrainian], Aurthor’s Abstract of DSci Thesis, NTUU KPI, Kyiv (2004).

  4. V. P. Legeza and D. V. Legeza, “The brachistochrone equation for a homogeneous cylinder,” in: Abstracts of 12th Int. M. Kravchuk Conf. [in Ukrainian], NTUU KPI, Kyiv (2008), p. 238.

  5. V. P. Legeza, “Quickest-descent curve in the problem of rolling of a homogeneous cylinder,” Int. Appl. Mech., 44, No. 12, 1430–1436 (2008).

    Article  Google Scholar 

  6. V. A. Postnov, V. O. Kalinin, and D. M. Rostovtsev, Ship Vibration [in Russian], Sudostroenie, Leningrad (1983).

    Google Scholar 

  7. A. N. Shmyrev, V. A. Morenshil’dt, and S. G. Il’ina, Ship Stabilizers [in Russian], Sudpromgiz, Leningrad (1961).

    Google Scholar 

  8. L. Elsgolts, Differential Equations and the Calculus of Variations, Mir, Moscow (1980).

    Google Scholar 

  9. P. K. Aravind, “Simplified approach to brachistochrone problem,” Am. J. Phys., 49, No. 9, 884–886 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  10. N. Ashby, W. E. Britting, W. F. Love, and W. Wyss, “Brachistochrone with coulomb friction,” Am. J. Phys., 43, No. 10, 902–906 (1975).

    Article  ADS  Google Scholar 

  11. D. V. Balandin, N. N. Bolotnik, and W. D. Pilkey, Optimal Protection from Impact, Shock and Vibration, Gordon and Breach, Amsterdam (2001).

    Google Scholar 

  12. V. Covic and M. Veskovic, “Brachistochrone on a surface with coulomb friction,” Int. J. Non-Lin. Mech., 43, 437–450 (2008).

    Article  Google Scholar 

  13. H. H. Denman, “Remarks on brachistochrone–tautochrone problem,” Am. J. Phys., 53, No. 3, 224–227 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  14. W. Dunham, Journey Through Genius, Penguin Books, New York (1991).

    Google Scholar 

  15. H. Erlichson, “Johann Bernoulli’s brachistochrone solution using Fermat’s principle of least time,” Eur. J. Phys., No. 20, 299–304 (1999).

    Google Scholar 

  16. I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ (1963).

    Google Scholar 

  17. H. F. Goldstein and C. M. Bender, “Relativistic brachistochrone,“ J. Math. Phys., 27, 507–511 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  18. J. C. Hayen, “Brachistochrone with coulomb friction,” Int. J. Non-Lin. Mech., 40, 1057–1075 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  19. Ju-Xing Yang, D. G. Stork, and D. Galloway, “The rolling unrestrained brachistochrone,” Am. J. Phys., 55, No. 9, 844–847 (1987).

    Article  ADS  Google Scholar 

  20. D. Palmieri, The Brachistochrone Problem, a New Twist to an Old Problem, Undergraduate Honors Thesis, Millersville University of PA, Millersville (1996).

  21. A. S. Parnovsky, “Some generalisations of the brachistochrone problem,” Acta Physica Polonica, A 93 Supplement, 5–55 (1998).

  22. E. Rodgers, “Brachistochrone and tautochrone curves for rolling bodies,” Am. J. Phys., 32, No. 4, 249–252 (1964).

    Google Scholar 

  23. G. M. Scarpello and D. Ritelli, “Relativistic brachistochrone under electric or gravitational uniform field,” ZAMM, 86, No. 9, 736–743 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Tee, “Isochrones and brachistochrones,” Neural, Parallel Sci. Comput., 7, 311–342 (1999).

    MATH  MathSciNet  Google Scholar 

  25. A. M. A. Van der Heijden and J. D. Diepstraten, “On the brachistochrone with dry friction,” Int. J. Non-Lin. Mech., 10, 97–112 (1975).

    Article  MATH  Google Scholar 

  26. G. Venezian, “Terrestrial brachistochrone,” Am. J. Phys., 34, No. 8, 701 (1966).

    Article  ADS  Google Scholar 

  27. B. Vratanar and M. Saje, “On analytical solution of the brachistochrone problem in a non-conservative field,” Int. J. Non-Lin. Mech., 33, No. 3, 437–450 (1998).

    Article  MathSciNet  Google Scholar 

  28. H. A. Yamani and A. A. Mulhem, “A cylindrical variation on the brachistochrone problem,” Am. J. Phys., 56, No. 5, 467–469 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Legeza.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 46, No. 6, pp. 137–143, June 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legeza, V.P. Conditions for pure rolling of a heavy cylinder along a brachistochrone. Int Appl Mech 46, 730–735 (2010). https://doi.org/10.1007/s10778-010-0361-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-010-0361-x

Keywords

Navigation