Skip to main content
Log in

Problems of modeling and optimal stabilization of the gas-lift process

  • Published:
International Applied Mechanics Aims and scope

The problems of motion of fluids, gases and gas–liquid mixtures in pipes related to gas-lift oil recovery are mathematically formulated as systems of nonlinear hyperbolic partial differential equations. Optimal-control problems are posed based on the proposed models and some real assumptions. These problems can be used to design programmed paths and controls, which underlie the controllers that stabilize the pressure or volume of injected gas. That the mathematical models agree with available field and laboratory data is demonstrated by examples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Ya. Abbasov, Methods for Calculating Static and Dynamic Borromhole Pressure in Gas and Gas-Condensate Wells [in Russian], Elm, Baku (1993).

    Google Scholar 

  2. F. A. Aliev, Methods for Solving Applied Optimization Problems for Dynamic Systems [in Russian], Elm, Baku (1989).

    Google Scholar 

  3. F. A. Aliev, M. Kh. Il’yasov, and M. A. Dzhamalbekov, “Modeling the operation of a gas-lift well,” Dokl. NAN Azerb., No. 4, 30–41 (2008).

  4. S. A. Bobrovskii, S. G. Shcherbakov, and M. A. Huseynzade, Motion of Gas in Pipelines with In-line Sampling [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  5. V. B. Larin, “Stabilization of linear systems with indeterminate parameters,” Int. Appl. Mech., 34, No. 2, 188–195 (1998).

    MathSciNet  Google Scholar 

  6. V. B. Larin, Control of Legged Vehicles [in Russian], Naukova Dumka, Kyiv (1980).

    Google Scholar 

  7. V. A. Mamedov, G. E. Odishariya, and O. V. Klapchuk, Motions of Gas-Liquid Mixtures in Pipes [in Russian], Nedra, Moscow (1978).

    Google Scholar 

  8. A. Kh. Mirzadzhanzade, I.M. Ametov, A. M. Khasaev, and V. I. Gusev, Oil Production Technology and Equipment [in Russian], Nedra, Moscow (1986).

    Google Scholar 

  9. I. M. Murav’ev and N. N. Repin, Studying the Motion of Multicomponent Mixtures in Wells [in Russian], Nedra, Moscow (1972).

    Google Scholar 

  10. N. B. Nuriev, Troubleshooting in Gas-lift Oil Production [in Russian], Elm, Baku (2006).

    Google Scholar 

  11. D. V. Prytkov, Using SGTPIPE/SGTFLOW for Design and Maintenance of Field Pipelines [in Russian], http://www.oil-info.ru, January 25 (2005).

  12. G. B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill New York (1969).

  13. I. A. Charnyi, Unsteady Motion of Real Fluid in Pipes [in Russian], Gostekhizdat, Moscow (1951).

    Google Scholar 

  14. Von D. Chisholm, Two Phase Flow in Pipelines and Heat Exchangers, George Goodwin, London (1983).

    Google Scholar 

  15. M. Z. Sharifov, V. A. Leonov, et al., A Borehole Plant for Fluid Flow Control and Cutoff [in Russian] Patent RF 2194152, December 10 (2002).

  16. V. I. Shchurov, Oil Production Technology and Equipment [in Russian], Nedra, Moscow (1983).

    Google Scholar 

  17. F. A. Aliev, A. N. Abbasov, R. A. Gurbanov, N. B. Nuriev, F. A. Guliev, and M. M. Mutallimov, “Mathematical modeling for control problem and well subsurface pump units operation diagnostics in oil field,” Appl. Comp. Math., 1, No. 1, 93–105 (2002).

    Google Scholar 

  18. F. A. Aliev and V. B. Larin, Optimization of Linear Control Systems. Analytical Methods and Computational Algorithms, Gordon and Breach, Amsterdam (1998).

    Google Scholar 

  19. I. Averbakh, V. Lebedev, and V. Truskov, “Nash equilibria solution in the competitive salesmen problem on a network,” Appl. Comp. Math., 7, No. 1, 54–65 (2008).

    Google Scholar 

  20. A. Boulkhemair, A. Chakib, and A. Nachaoui, “Uniform trace theorem and application to shape optimization,” Appl. Comp. Math., 7, No. 2, 192–200 (2008).

    MathSciNet  Google Scholar 

  21. E. Capanogara, “Solving a gas-lift optimization problem by dynamic programming,” Europ. J. Operat. Res., 85–102 (2005).

  22. F. L. Chernousko, “Optimization of progressive motions for multibody systems,” Appl. Comp. Math., 7, No. 2, 168–178 (2008).

    MathSciNet  Google Scholar 

  23. M. M. Konstantinov and H. P. Petkov, “Perturbation methods in linear algebra and control (survey),” Appl. Comp. Math., 7, No. 2, 141–162 (2008).

    MathSciNet  Google Scholar 

  24. V. B. Larin, “Control problems for systems with uncertainty,” Int. Appl. Mech., 37, No. 12, 1339–1567 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  25. V. B. Larin, “High accuracy algorithms for solution of discrete periodic Riccati equations,” Appl. Comp. Math., 6, No. 1, 10–17 (2007).

    MathSciNet  Google Scholar 

  26. P. Pafalox-Hern, “A new approach for continuous gas-lift simulation and optimization,” SPE 95949, Inst. Technologico de Celaya, 4–8 (2005).

  27. E. Poblano, “Stability analysis of continuous-flow gas-lift wells,” SPE 77732, Richardson, TX, 10–15 (2002).

  28. G. Santos, N. Bordalo, and F. J. Alhanati, “Study of the dynamics, optimization and selection of intermittent gas-lift methods: A comprehensive model,” J. Pet. Sci. Eng., 32, 231–248 (2001).

    Article  Google Scholar 

  29. X. Yuan, E. Caraballo, J. Little, at al., “Feedback control design for subsonic cavity flows,” Appl. Comp. Math., 8, No. 1, 70–91 (2009).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Aliev.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 46, No. 6, pp. 113–122, June 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliev, F.A., Il’yasov, M.K. & Nuriev, N.B. Problems of modeling and optimal stabilization of the gas-lift process. Int Appl Mech 46, 709–717 (2010). https://doi.org/10.1007/s10778-010-0359-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-010-0359-4

Keywords

Navigation