Skip to main content
Log in

Photoelastic modeling of the fracture of viscoelastic orthotropic plates with a crack

  • Published:
International Applied Mechanics Aims and scope

The well-known equations of photoelasticity of linear viscoelastic bodies are used to describe the photoelastic behavior of a viscoelastic orthotropic plate with a crack. Expressions for the stress intensity factors (SIFs) at the crack tip are obtained using photoelastic measurements. The time dependence of the SIFs is analyzed and shown to be determined by the angles between directions of the crack and tension

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. E. Andreikiv, V. R. Skal’skii, and O. M. Sergienko, “Acoustic emission criteria for the express-evaluation of internal damage of composite materials,” Fiz.-Khim. Mekh. Mater., No. 2, 84–92 (2003).

  2. A. A. Kaminsky, “Rheological structural model of a crack in a viscoelastic composite material,” Int. Appl. Mech., 28, No. 7, 415–420 (1992).

    Article  MathSciNet  Google Scholar 

  3. A. A. Kaminsky and D. A. Gavrilov, Long-Term Fracture of Polymeric and Composite Materials with Cracks [in Russian], Naukova Dumka, Kyiv (1992).

    Google Scholar 

  4. A. A. Kaminsky and M. F. Selivanov, “Long-term failure of a layered viscoelastic composite material with a crack under a time-dependent load,” Mech. Comp. Mater., 36, No. 4, 327–336 (2000).

    Article  Google Scholar 

  5. E. I. Edel’shtein, M. V. Leikin, N. M. Drichko, et al., “Coordinate-synchronized polarimeter KSP-10,” in: Proc. 8th All-Union Conf. on the Photoelastic Method [in Russian], Vol. 2, Tallinn (1979), pp. 77–84.

  6. H. T. Corten, “Fracture mechanics of composites,” in: H. Liebowitz (ed.), Fracture: An Advanced Treatise, Vol. 7, Acad. Press, New York (1972), pp. 695–703.

    Google Scholar 

  7. S. G. Lekhnitskii, Anisotropic Plates, Gordon and Breach, New York (1968).

    Google Scholar 

  8. I. I. Lyashko, V. L. Makarov, and A. K. Skorobagat’ko, Computing Techniques [in Russian], Vyshcha Shkola, Kyiv (1977).

    Google Scholar 

  9. M. P. Malezhik, Dynamic Photoelasticity of Anisotropic Bodies [in Ukrainian], IGF NAN Ukrainy im. Subbotina, Kyiv (2001).

    Google Scholar 

  10. M. P. Malezhik, “Modeling the stress–strain state near cracks in anisotropic linear viscoelastic plates,” Fiz.-Khim. Mekh. Mater., No. 2, 93–95 (2003).

  11. M. P. Malezhik, “Optically sensitive materials for modeling stress wave fields in anisotropic bodies,” Fiz.-Khim. Mekh. Mater., No. 1, 99–103 (2004).

  12. M. P. Malezhik and O. P. Malezhik, “Determining the stress intensity factors for viscoelastic anisotropic plates with a crack subject to long-term fracture,” Nauk. Visti NTTU “KPI,” No. 3, 70–74 (2005).

  13. V. P. Netrebko and I. P. Vasil’chenko, Polarization Methods in the Mechanics of Composite Materials [in Russian], Izd. Mosk. Univ., Moscow (1990).

    Google Scholar 

  14. V. R. Skal’s’kyi, “Acoustic-emission analysis of accumulated bulk damage in solids,” Fiz.-Khim. Mekh. Mater., No. 1, 91–100 (2001).

  15. A. M. Skudra, F. Ya. Bulavs, and K. A. Rotsens, Creep and Static Fatigue of Reinforced Plastics [in Russian], Zinatne, Riga (1971).

  16. M. I. Shut and N. M. Zazimko, “Studying the initiation and growth of a main crack,” in: Trans. M. P. Dragomanov National Pedagogical University [in Ukrainian], issue 2, NPU, Kyiv (2001), pp. 3–8.

  17. M. P. Malezhik and I. S. Chernyshenko, “Solution of nonstationary problems in the mechanics of anisotropic bodies by the method of dynamic photoelasticity,” Int. Appl. Mech., 45, No. 9, 954–980 (2009).

    Article  Google Scholar 

  18. M. P. Malezhik, I. S. Chernyshenko, and G. P. Sheremet, “Photoelastic simulation of the stress wave field around a tunnel in an anisotropic rock mass subject to shock load,” Int. Appl. Mech., 42, No. 8, 948–950 (2006).

    Article  Google Scholar 

  19. M. P. Malezhik, I. S. Chernyshenko, and G. P. Sheremet, “Diffraction of stress waves by a free or reinforced hole in an orthotropic plate,” Int. Appl. Mech., 43, No. 7, 767–772 (2007).

    Article  Google Scholar 

  20. M. P. Malezhik, O. P. Malezhik, and I. S. Chernyshenko, “Photoelastic determination of dynamic crack-tip stresses in an anisotropic plate,” Int. Appl. Mech., 42, No. 5, 574–581 (2006).

    Article  Google Scholar 

  21. M. P. Malezhik, O. P. Malezhik, A. I. Zirka, and I. S. Chernyshenko, “Dynamic photoelastic study of wave fields in elastic plates with stress concentrators,” Int. Appl. Mech., 41, No. 12, 1399–1406 (2005).

    Article  Google Scholar 

  22. M. P. Malezhik, O. P. Malezhik, A. I. Zirka, and I. S. Chernyshenko, “Stress wave fields in plates weakened by curvilinear holes with edge cracks,” Int. Appl. Mech., 42, No. 2, 192–195 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Malezhik.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 46, No. 6, pp. 76–82, June 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voitovich, L.V., Malezhik, M.P. & Chernyshenko, I.S. Photoelastic modeling of the fracture of viscoelastic orthotropic plates with a crack. Int Appl Mech 46, 677–682 (2010). https://doi.org/10.1007/s10778-010-0355-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-010-0355-8

Keywords

Navigation