Skip to main content
Log in

General love solution in the linear isotropic inhomogeneous theory of radius-dependent elasticity

  • Published:
International Applied Mechanics Aims and scope

A general Love solution for the inhomogeneous linear isotropic theory of elasticity with the elastic constants dependent on the coordinate r is proposed. The axisymmetric case is analyzed and cylindrical coordinates are used. This is the fourth publication in the series on general solutions in the inhomogeneous theory of elasticity. The new results are promising for the modern theory of functionally graded materials. The key steps of deriving the Love solutions are described for further use of the derivation procedure. The procedure of generalizing the Love solutions to the inhomogeneous theory of elasticity is detailed. The results obtained are discussed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yu. Kashtalyan and J. J. Rushchitsky, “General Hoyle–Youngdahl and Love solutions in the linear inhomogeneous theory of elasticity,” Int. Appl. Mech., 46, No. 1, 1–17 (2010).

    Article  Google Scholar 

  2. M. Yu. Kashtalyan and J. J. Rushchitsky, “Love solutions in the linear inhomogeneous transversely isotropic theory of elasticity,” Int. Appl. Mech., 46, No. 2, 121–129 (2010).

    Article  Google Scholar 

  3. M. A. Koltunov, Yu. N. Vasil’ev, and V. A. Chernykh, Elasticity and Strength of Cylindrical Bodies [in Russian], Vysshaya Shkola, Moscow (1975).

    Google Scholar 

  4. V. A. Lomakin, Theory of Elasticity of Inhomogeneous Bodies [in Russian], Izd. Mosk. Univ., Moscow (1976).

    Google Scholar 

  5. A. I. Lurie, Theory of Elasticity, Springer, Berlin (1999).

    Google Scholar 

  6. V. Birman and L. W. Bird, “Modeling and analysis of FGM and structures,” Appl. Mech. Rev., 60, 195–216 (2007).

    Article  Google Scholar 

  7. C. Cattani and J. J. Rushchitsky, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructures, World Scientific, Singapore–London (2007).

    Book  Google Scholar 

  8. C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, “Physical constants for one type of nonlinearly elastic fibrous microand nanocomposites with hard and soft nonlinearities,” Int. Appl. Mech., 41, No. 12, 1368–1377 (2005).

    Article  Google Scholar 

  9. N. Gupta, S. K. Gupta, and B. J. Mueller, “Analysis of a functionally graded particulate composite under flexural loading conditions,” Mater. Sci, Eng., A485, No. 1–2, 439–447 (2008).

    Google Scholar 

  10. A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On the mechanics of nanomaterials,” Int. Apðl. Mech., 39, No. 11, 1271–1293 (2003).

    Article  Google Scholar 

  11. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Establishing fundamentals of the mechanics of nanocomposites,” Int. Appl. Mech., 43, No. 3, 247–271 (2007).

    Article  Google Scholar 

  12. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Comparative computer modeling of carbon-polymer composites with carbon or graphite microfibers or carbon nanotubes,” Comp. Model. Eng. Sci., 26, No. 3, 159–176 (2008).

    Google Scholar 

  13. I. A. Guz and J. J. Rushchitsky, “Comparing the evolution characteristics of waves in nonlinearly elastic micro- and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No. 7, 785–793 (2004).

    Article  Google Scholar 

  14. I. A. Guz and J. J. Rushchitsky, “Theoretical description of a delamination mechanism in fibrous micro- and nano-composites,” Int. Appl. Mech., 40, No. 10, 1129–1136 (2004).

    Google Scholar 

  15. I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Developing the mechanical models for nanomaterials,” Composites. Part A: Appl. Sci. Manufact., 38, No. 4, 1234–1250 (2007).

    Article  Google Scholar 

  16. I. A. Guz and J. J. Rushchitsky, “Computational simulation of harmonic wave propagation in fibrous micro- and nanocomposites,” Compos. Sci. Technol., 67, No. 4, 861–866 (2007).

    Article  Google Scholar 

  17. I. A. Guz, A. A. Rodger, A. N. Guz, and J. J. Rushchitsky, “Predicting the properties of micro and nanocomposites: from the microwhiskers to bristled nano-centipedes,” Philos. Trans. Royal Society, A: Math. Phys. Eng. Sci., 365, No. 1860, 3233–3239 (2008).

    Google Scholar 

  18. H. G. Hahn, Elastizitatstheorie. Grundlagen der linearen Theorie and Anwendungen auf eindimensionale, ebene und raumliche Probleme, B. G. Teubner, Stuttgart (1985).

  19. M. Kashtalyan, “Three-dimensional elasticity solution for bending of functionally graded rectangular plates,” Europ. J. Mech. A/Solids, 23, No. 5, 853–864 (2004).

    Article  MATH  ADS  Google Scholar 

  20. M. Kashtalyan and M. Menshykova, “Three-dimensional elastic deformation of a functionally graded coating/substrate system,” Int. J. Solids Struct., 44, No. 16, 5272–5288 (2007).

    Article  MATH  Google Scholar 

  21. M. Kashtalyan and M. Menshykova, “Three-dimensional analysis of a functionally graded coating~/~substrate system of finite thickness,” Phil. Trans. Royal Society A, 336, No. 1871, 1821–1826 (2008).

    Article  ADS  Google Scholar 

  22. M. Kashtalyan and M. Menshykova, “Three-dimensional elasticity solution for sandwich panels with a functionally graded core,” Compos. Struct., 74, No. 2, 326–336 (2009).

    Google Scholar 

  23. M. Kashtalyan and J. J. Rushchitsky, “Revisiting displacement functions in three-dimensional elasticity of inhomogeneous media,” Int. J. Solids Struct., 46, No. 19, 3654–3662 (2009).

    Google Scholar 

  24. W. A. Kayssen and B. Ilschner, “FGM research activities in Europe,” MRS Bull., 20, 22–26 (1995).

    Google Scholar 

  25. M. Koizumi, “Concept of FGM,” Ceramic Trans., 34, 3–10 (1993).

    Google Scholar 

  26. M. Koizumi, “FGM activities in Japan,” Composites B, B 28, 1–4 (1997).

    Article  Google Scholar 

  27. X. Y. Li, H. J. Ding, and W. Q. Chen, “Elasticity solutions for a transversely isotropic FGM circular plate subject to an axisymmetric transverse load qr k,” Int. J. Solids Struct., 45, 191–210 (2008).

    MATH  Google Scholar 

  28. X. Y. Li, H. J. Ding, and W. Q. Chen, “Axisymmetric elasticity solutions for a uniformly loaded annular plate of transversely isotropic FGM,” Acta Mech., 196, 139–159 (2008).

    Article  MATH  Google Scholar 

  29. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York (1944).

    MATH  Google Scholar 

  30. Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, and R. G. Ford, FGM: Design, Processing and Applications, Kluwer, Dordrecht (1999).

    Google Scholar 

  31. W. Nowacki, Elasticity Theory [in Polish], PWN, Warsaw (1970).

    Google Scholar 

  32. M. J. Pindera, S. M. Arnold, J. Aboudi, and D. Hui, “Use of composites in FGM,” Compos. Eng., 4, 1–145 (1994).

    Article  Google Scholar 

  33. V. P. Plevako, “On the theory of elasticity of inhomogeneous media,” J. Appl. Math. Mech., 35, No. 5, 806–813 (1971).

    Article  MATH  Google Scholar 

  34. Y. N. Shabana and N. Noda, “Numerical evaluation of the thermomechanical effective properties of FGM using homogenization method,” Int. J. Solids Struct., 45, 3494–3506 (2008).

    MATH  Google Scholar 

  35. S. Suresh and A. Mortensen, Fundamentals of FGM, Maney, London (1998).

    Google Scholar 

  36. M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota (eds.), Proc. 1st Symp. on FGM Forum and the Society of Non-Traditional Technology, Japan (1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kashtalyan.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 46, No. 3, pp. 3–13, March 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashtalyan, M.Y., Rushchitsky, J.J. General love solution in the linear isotropic inhomogeneous theory of radius-dependent elasticity. Int Appl Mech 46, 245–254 (2010). https://doi.org/10.1007/s10778-010-0304-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-010-0304-6

Keywords

Navigation