Dynamic problems for and stress–strain state of inhomogeneous shell structures under stationary and nonstationary loads

This paper reviews studies and analyzes results on the effect of discrete ribs on the dynamic characteristics of rectangular plates and cylindrical shells. Use is made of the vibration equations derived from the classical theories of beams, plates, and shells. The effect of Pasternak’s elastic foundation on the critical velocities of a structurally orthotropic model of a ribbed cylindrical shell is determined. Nonstationary problems are solved for perforated and ribbed shells of revolution filled with a fluid or resting on an elastic foundation and subjected to moving or impulsive loads. Results from studies of the behavior of sandwich shell structures under impulsive loads of various types are presented

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Ya. Aleksandrov and L. É. Bryuker, Design of Sandwich Panels [in Russian], Oborongiz, Moscow (1960).

    Google Scholar 

  2. 2.

    I. Ya. Amiro and V. A. Zarutskii, Theory of Ribbed Shells, Vol. 2 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1980).

    Google Scholar 

  3. 3.

    I. Ya. Amiro and V. A. Zarutskii, “Statics, dynamics, and stability of ribbed shells,” in: Advances in Science and Technology: Solid Mechanics [in Russian], Issue 21, VINITI, Moscow (1990), pp. 132–191.

    Google Scholar 

  4. 4.

    K. G. Golovko, P. Z. Lugovoi, and V. F. Meish, “Solving dynamic problems for reinforced cylindrical shells on a Winkler foundation under impulsive loads,” Sist. Tekhnol., Vyp.: Mat. Probl. Tekhn. Mekh., No. 4(45), 3–7 (2006).

  5. 5.

    K. G. Golovko, P. Z. Lugovoi, and V. F. Meish, “Dynamic behavior of spherical shells on an elastic foundation under impulsive loads,” Sist. Tekhnol., Vyp.: Mat. Probl. Tekhn. Mekh., No. 4(51), 9–13 (2007).

  6. 6.

    A. N. Guz, P. Z. Lugovoi, and V. F. Meish, “Mathematical modeling of the dynamic behavior of structurally nonuniform casings of explosion chambers,” Int. Appl. Mech., 34, No. 7, 615–622 (1998).

    Article  Google Scholar 

  7. 7.

    O. M. Guz, P. Z. Lugovi, V. I. Gulyaev, V. F. Meish, and V. P. Mukoid, An Explosion Chamber for Explosion Treatment of Materials [in Ukrainian], Declarative Patent No. 96114449, Byul. Nos. 5–11, October 16 (2000).

  8. 8.

    V. A. Zarutskii and N. Ya. Prokopenko, “Influence of discrete ribs on the vibrations of rectangular plates,” Int. Appl. Mech., 42, No. 2, 181–191 (2006).

    Article  Google Scholar 

  9. 9.

    P. Z. Lugovoi, “Dynamics of shell structures under impulsive loading (review),” Int. Appl. Mech., 26, No. 8, 715–731 (1990).

    Google Scholar 

  10. 10.

    P. Z. Lugovoi, “The dynamics of thin-walled structures under nonstationary loads,” Int. Appl. Mech., 37, No. 5, 602–627 (2001).

    Article  Google Scholar 

  11. 11.

    P. Z. Lugovoi, “Propagation of harmonic waves in an orthotropic cylindrical shell on elastic foundation,” Int. Appl. Mech., 40, No. 3, 297–303 (2004).

    Article  Google Scholar 

  12. 12.

    P. Z. Lugovoi, V. I. Gulyaev, and M. O. Lisyuk, “Propagation of harmonic waves in a cylindrical shell (Timoshenko model),” Int. Appl. Mech., 39, No. 4, 472–478 (2003).

    Article  Google Scholar 

  13. 13.

    P. Z. Lugovyi, V. I. Gulyaev, and M. O. Lisyuk, “Casing pipe under a moving impulsive load,” Visn. Nats. Transp. Univ., No. 7, 454–458 (2002).

  14. 14.

    P. Z. Lugovoi, V. G. Kravets, and A. Z. Margaryan, “Dynamics of a polyethylene waveguide tube under a moving shock load,” Visn. NTTU (KPI), Ser. Girnytstvo, No. 10, 38–42 (2004).

    Google Scholar 

  15. 15.

    P. Z. Lugovoi and M. O. Lisyuk, “Propagation of harmonic waves in casing pipes influenced by the annulus,” Syst. Technol., 5 (22), 79–83 (2002).

    Google Scholar 

  16. 16.

    P. Z. Lugovi and M. O. Lisyuk, “Dependence of the critical velocities of moving explosive loads on the type of orthotropy of casing pipes,” Visn. NTUU (KPI), Ser. Girnytstvo, No. 7, 16–22 (2002).

  17. 17.

    P. Z. Lugovi and M. O. Lisyuk, “Effect of cement sheath on the blast-induced wave processes in cased wells with fluid,” in: Problems of Labor Protection in Ukraine (Collected Scientific Papers) [in Ukrainian], Issue 5, Kyiv (2002), pp. 54–59.

  18. 18.

    P. Z. Lugovi and M. O. Lisyuk, “Effect of the orthotropy of cased pipes on the critical velocities of moving explosive loads,” Probl. Tribol., No. 4, 148–151 (2002).

    Google Scholar 

  19. 19.

    P. Z. Lugovoi and M. O. Lisyuk, “Influence of cement sheath on the vibration of two-layer perforated sections of casing pipes under impulsive loads,” Sist. Tekhnol., 2(25), 51–58 (2003).

    Google Scholar 

  20. 20.

    P. Z. Lugovyi and M. O. Lisyuk, “Vibration of casing pipes influenced by the annulus,” Visn. NTUU (KPI), Ser. Girnytstvo, No. 8, 60–64 (2003).

  21. 21.

    P. Z. Lugovyi and M. O. Lisyuk, “Propagation of axisymmetric waves in an orthotropic cylindrical shell,” Sist. Tekhnol., 3 (32), 147–153 (2004).

    Google Scholar 

  22. 22.

    N. A. Lysyuk and P. Z. Lugovoi, “Influence of perforation on the dynamics of pipes used in geotechnical wells,” Visn. Kremenchutsk. Derzh. Politekh. Univ., No. 2, 372–374 (2001).

  23. 23.

    N. A. Lysyuk and P. Z. Lugovoi, “Explosive action on geotechnical wells with fluid,” Visn. Kremenchutsk. Derzh. Politekh. Univ., No. 2, 19–22 (2002).

  24. 24.

    P. Z. Lugovyi, M. O. Lisyuk, M. I. Mikhailova, I. I. Anik’ev, and E. O. Sushchenko, “Theoretical and experimental study of wave propagation in orthotropic cylindrical shells,” Visn. Kremenchutsk. Derzh. Politekh. Univ., No. 5 (34), 105–106 (2005).

  25. 25.

    P. Z. Lugovoi, S. P. Malashenkov, and V. F. Meish, “Dynamics of a compound dome under shock loads,” Syst. Tekhnol., 5 (22), 8–12 (2002).

    Google Scholar 

  26. 26.

    P. Z. Lugovoi and Yu. A. Meish, “Wave processes in spherical shell–soil ground system under impulsive loading,” Visn. Nats. Transp. Univ., 15, ch. 1, 93–98 (2007).

    Google Scholar 

  27. 27.

    P. Z. Lugovoi, V. F. Meish, M. I. Mikhailova, S. P. Malashenkov, et al., “Interaction of complex objects with shock waves,” Strength of Materials, 35, No. 6, 581–587 (2003).

    Article  Google Scholar 

  28. 28.

    P. Z. Lugovoi, V. F. Meish, and N. S. Remez, “Viscoelastoplastic behavior of reinforced shells under nonstationary loading,” Dop. NAN Ukrainy, No. 3, 55–60 (2000).

  29. 29.

    P. Z. Lugovoi, V. F. Meish, and E. A. Shtantsel’, Nonstationary Dynamics of Inhomogeneous Shell Structures [in Russian], Izd. Poligraf. Tsentr. Kievsk. Univ., Kyiv (2005).

    Google Scholar 

  30. 30.

    P. Z. Lugovyi, I. Yu. Podil’chuk, and K. G. Golovko, “Effect of an elastic foundation on the wave propagation in an orthotropic cylindrical shell,” Mat. Metody Fiz.-Mekh. Polya, 50, No. 1, 98–106 (2007).

    Google Scholar 

  31. 31.

    P. Z. Lugovoi, M. Hudek, V. G. Kravets, A. A. Zheltonozhko, et al., “Dynamics of a tubular waveguide under moving shock load,” in: Proc. 11th Int. Sci. Symp. Geotechnika [in Polish], Gliwice-Ustron, October 19–22 (2004), pp. 41–49.

  32. 32.

    P. Z. Lugovoi, V. F. Meish, and K. G. Golovko, “Wave processes in reinforced cylindrical shells on an elastic foundation under impulsive loads,” Visn. NTUU KPI, Ser. Girnytstvo, 14, 31–37 (2006).

    Google Scholar 

  33. 33.

    P. Z. Lugovoi, V. F. Meish, B. P. Rybakin, and G. V. Secrieru, “Dynamics of reinforced compound shells under nonstationary loads,” Int. Appl. Mech., 42, No. 4, 455–460 (2006).

    Article  Google Scholar 

  34. 34.

    P. Z. Lugovoi, V. F. Meish, B. P. Rybakin, and G. V. Secrieru, “On numerical solution of dynamic problems in the theory of reinforced shells,” Int. Appl. Mech., 42, No. 5, 536–540 (2006).

    Article  Google Scholar 

  35. 35.

    P. Z. Lugovoi, V. F. Meish, B. P. Rybakin, and G. V. Secrieru, “Numerical simulation of the dynamics of a reinforced shell subject to nonstationary load,” Int. Appl. Mech., 44, No. 7, 788–793 (2008).

    Article  Google Scholar 

  36. 36.

    P. Z. Lugovoi, V. F. Meish, and S. É. Shtantsel’, “Forced nonstationary vibrations of a sandwich cylindrical shell with cross-ribbed core,” Int. Appl. Mech., 41, No. 2, 161–167 (2005).

    Article  Google Scholar 

  37. 37.

    V. F. Meish, “Numerical solution of dynamic problems for reinforced ellipsoidal shells under nonstationary loads,” Int. Appl. Mech., 41, No. 4, 386–391 (2005).

    Article  Google Scholar 

  38. 38.

    V. F. Meish, “Application of finite-difference approximations of high order of accuracy to the solution of dynamic problems for reinforced shells,” in: Proc. 13th Int. Symp. (MDOZMF-2007) on Discrete Singularity Methods in Problems of Mathematical Physics [in Russian], Kharkov–Kherson (2007), pp. 197–200.

  39. 39.

    V. F. Meish and N. V. Arnauta, “Forced vibration of five-layer conical shells with discrete ribs under nonstationary loading,” Sist. Tekhnol., Mat. Probl. Tekhn. Mekh., No. 4 (57), 120–124 (2008).

  40. 40.

    V. F. Meish and V. N. Boiko, “Formulation of and a numerical solution algorithm for nonaxisymmetric dynamic problems for sandwich cylindrical shells (discretely structural approach),” Sist. Tekhnol., Mat. Probl. Tekhn. Mekh., No. 2 (37), 116–121 (2005).

  41. 41.

    V. F. Meish and A. S. Kairov, “Vibrations of reinforced cylindrical shells with initial deflections under nonstationary loads,” Int. Appl. Mech., 41, No. 1, 42–48 (2005).

    Article  Google Scholar 

  42. 42.

    V. F. Meish and N. V. Kravchenko, “Determination of the stress–strain state of layered shells with discrete inhomogeneities under nonstationary loads,” Visn. Kyiv. Univ., Ser. Fiz.-Mat. Nauky, No. 3, 210–216 (2002).

  43. 43.

    V. F. Meish and N. V. Kravchenko, “Forced vibration of layered spherical shells with a reinforced hole under nonstationary loading,” Teor. Prikl. Mekh., 37, 146–150 (2003).

    Google Scholar 

  44. 44.

    V. F. Meish and N. V. Kravchenko, “Nonaxisymmetric vibrations of discretely reinforced inhomogeneous multilayer cylindrical shells under nonstationary loads,” Int. Appl. Mech., 39, No. 9, 1066–1072 (2003).

    Article  Google Scholar 

  45. 45.

    V. F. Meish and N. V. Kravchenko, “Applying Richardson’s finite differences to solve dynamic problems for discretely reinforced layered cylindrical shells,” Visn. Kyiv. Univ., Ser. Fix.-Mat. Nauky, No. 3, 115–121 (2004).

    Google Scholar 

  46. 46.

    V. F. Meish and L. A. Latanskaya, “Forced vibration of sandwich conical shells with piecewise-homogeneous core under nonstationary loads,” Teor. Prikl. Mekh., 40, 90–95 (2005).

    Google Scholar 

  47. 47.

    V. F. Meish and L. O. Latans’ka, “Analysis of the dynamic behavior of sandwich spherical shells with piecewise-homogeneous core under nonstationary loads,” Visn. Kyiv. Univ., Ser. Fiz.-Mat. Nauky, No. 2, 127–132 (2005).

  48. 48.

    V. F. Meish and L. A. Latanskaya, “Axisymmetric vibration of sandwich cylindrical shells with piecewise-homogeneous core under nonstationary loading,” Visn. Donetsk. Univ, Ser. A: Prirodn. Nauky, No. 1, 161–164 (2008).

  49. 49.

    V. F. Meish and N. V. Maiborodina, “Stress–strain analysis of ellipsoidal shells discretely reinforced with longitudinal ribs under nonstationary distributed loads,” Teor. Prikl. Mekh., 43, 150–155 (2007).

    Google Scholar 

  50. 50.

    V. F. Meish and N. V. Maiborodina, “Analysis of the nonaxisymmetric vibrations of flexible ellipsoidal shells discretely reinforced with transverse ribs under nonstationary loads,” Int. Appl. Mech., 44, No. 10, 1128–1136 (2008).

    Article  Google Scholar 

  51. 51.

    V. F. Meish and Yu. A. Meish, “Formulation of and a numerical solution algorithm for problems of forced vibration of cylindrical sandwich shells with piecewise-homogeneous core,” Sist. Tekhnol., Mat. Probl. Tekhn. Mekh., No. 2 (25), 21–26 (2003).

  52. 52.

    V. F. Meish, Yu. A. Meish, and É. A. Shtantsel’, “Using applied theories to describe the dynamic behavior of sandwich beams under nonstationary loading,” Sist. Tekhnol., Mat. Probl. Tekhn. Mekh., No. 4 (51), 27–34 (2007).

  53. 53.

    V. F. Meish and Yu. A. Meish, “Numerical solution of problems of forced vibration of cylindrical sandwich shells with a piecewise-homogeneous core,” Visn. Nats. Transp. Univ., No. 8, 432–437 (2003).

  54. 54.

    V. F. Meish and Yu. A. Khamrenko, “Comparative analysis of the dynamic responses of transiently loaded sandwich shells predicted by various applied theories,” Int. Appl. Mech., 39, No. 7, 856–861 (2003).

    Article  Google Scholar 

  55. 55.

    V. F. Meish and S. É. Shtantsel’, “Nonaxisymmetric vibration of cylindrical sandwich shells with an inhomogeneous core under dynamic loads,” Visn. Kyiv. Univ., Ser. Fix.-Mat. Nauky, No. 5, 342–347 (2001).

    Google Scholar 

  56. 56.

    É. S. Osternik, “Experimental study of the deformation of the normal and the implementation of boundary conditions for layered plates,” in: Proc. 8th All-Union Conf. on the Theory of Shells and Plates [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  57. 57.

    V. V. Pikul’, General Engineering Theory of Thin Elastic Plates and Shallow Shells [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  58. 58.

    V. G. Piskunov and A. O. Rasskazov, “Evolution of the theory of laminated plates and shells,” Int. Appl. Mech., 38, No. 2, 135–166 (2002).

    Article  Google Scholar 

  59. 59.

    N. N. Popov, B. S. Rastorguev, and A. S. Zabegaev, Design of Structures Subject to Dynamic Loads [in Russian], Vyssh. Shk., Moscow (1992).

    Google Scholar 

  60. 60.

    H. Abramovich and V. A. Zarutskii, “Stability and vibrations of nonclosed circular cylindrical shells reinforced with discrete longitudinal ribs,” Int. Appl. Mech., 44, No. 1, 16–22 (2008).

    Article  Google Scholar 

  61. 61.

    K. G. Golovko, P. Z. Lugovoi, and V. F. Meish, “Solution of axisymmetric dynamic problems for cylindrical shells on an elastic foundation,” Int. Appl. Mech., 43, No. 12, 1390–1395 (2007).

    Article  Google Scholar 

  62. 62.

    P. Z. Lugovoy, V. F. Meish, and N. S. Remez, “Elastoviscoplastic behaviour of ribbed cylindrical shells under nonstationary loading,” Arc. Civil Eng., XLVI, No. 3, 385–391 (2000).

    Google Scholar 

  63. 63.

    P. Lugovoi, V. Meish, B. Rybakin, and G. Secrieru, “Mathematical simulation of explosion deformation of cylinder shells,” in: Proc. Annual Symp. of the Institute of Solid Mechanics of Romanian Academy (SISOM 2005), Bucharest, May 18–21 (2005), pp. 58–63.

  64. 64.

    P. Z. Lugovoi, V. F. Meish, B. P. Rybakin, and G. V. Secrieru, “Numerical simulation of the dynamics of a reinforced shell subject to nonstationary load,” Int. Appl. Mech., 44, No. 7, 788–793 (2008).

    Article  Google Scholar 

  65. 65.

    V. F. Meish, “Nonstationary vibrations of three-layered cylindrical shell structures with non-homogeneous filler under dynamic loading,” in: Proc. 7th Conf. on Shell Structures, Theory and Applications, 11, Gdansk–Jurata (Poland) (2002), pp. 175–176.

  66. 66.

    V. F. Meish and N. V. Maiborodina, “Analysis of the nonaxisymmetric vibrations of flexible ellipsoidal shells discretely reinforced with transverse ribs under nonstationary loads,” Int. Appl. Mech., 44, No. 10, 1128–1136 (2008).

    Article  Google Scholar 

  67. 67.

    N. A. Shulga and V. F. Meish, “Forced vibration of three-layered spherical and ellipsoidal shells under axially symmetric loads,” Mech. Comp. Mater., 39, No. 5, 625–636 (2003).

    Google Scholar 

  68. 68.

    V. A. Zarutskii, “The theory and methods of the stress–strain analysis of ribbed shells,” Int. Appl. Mech., 36, No. 10, 1259–1283 (2000).

    Article  MathSciNet  Google Scholar 

  69. 69.

    V. A. Zarutskii, “Edge resonance in structurally orthotropic cylindrical shells,” Int. Appl. Mech., 41, No. 7, 786–792 (2005).

    Article  Google Scholar 

  70. 70.

    V. A. Zarutskii and N. Ya. Prokopenko, “The natural vibrations of rectangular plates reinforced by orthogonal ribs,” Int. Appl. Mech., 36, No. 7, 948–953 (2000).

    Article  Google Scholar 

  71. 71.

    V. A. Zarutskii and N. Ya. Prokopenko, “Vibrations and stability of shallow ribbed shells with a rectangular planform,” Int. Appl. Mech., 38, No. 6, 710–715 (2002).

    Article  Google Scholar 

  72. 72.

    V. A. Zarutskii and N. Ya. Prokopenko, “Influence of discrete longitudinal ribs on harmonic waves in cylindrical shells,” Int. Appl. Mech., 39, No. 4, 457–463 (2003).

    Article  Google Scholar 

  73. 73.

    V. A. Zarutskii and N. Ya. Prokopenko, “Dispersion curves for harmonic waves in longitudinally reinforced cylindrical shells,” Int. Appl. Mech., 39, No. 6, 721–725 (2003).

    Article  Google Scholar 

  74. 74.

    V. A. Zarutskii and N. Ya. Prokopenko, “Dispersion curves for harmonic waves propagating along the directrix of a cylindrical shell reinforced with rings,” Int. Appl. Mech., 39, No. 10, 1193–1198 (2003).

    Article  Google Scholar 

  75. 75.

    V. A. Zarutskii and N. Ya. Prokopenko, “Dispersion equations for harmonic waves propagating along a cylindrical shell reinforced with a rib mesh (single-mode approximation),” Int. Appl. Mech., 40, No. 2, 190–198 (2004).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Zarutskii.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 45, No. 3, pp. 23–58, March 2009.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zarutskii, V.A., Lugovoi, P.Z. & Meish, V.F. Dynamic problems for and stress–strain state of inhomogeneous shell structures under stationary and nonstationary loads. Int Appl Mech 45, 245–271 (2009). https://doi.org/10.1007/s10778-009-0187-6

Download citation

Keywords

  • dynamic problems
  • inhomogeneous shell structures
  • moving and impulsive loads
  • Pasternak’s elastic foundation
  • perforated and ribbed shells of revolution
  • sandwich shell structures