Skip to main content
Log in

Analyzing the propagation of a plane wave in a microcomposite material taking inertial interaction into account

  • Published:
International Applied Mechanics Aims and scope

The influence of inertial interaction on the coefficient describing the redistribution of the amplitude of a plane wave is analyzed. Two new wave effects in fibrous microcomposites are revealed: abrupt change in the amplitude of the first mode in the matrix and the absence of the second mode in fibers in some frequency range

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bedford, H. J. Sutherland, and R. Lingle, “On theoretical and experimental wave propagation in a fiber-reinforced elastic material,” ASME, Appl. Mech., 39, No. 2 (1972).

  2. I. A. Guz and J. J. Rushchitsky, “Comparison of mechanical properties and effects in micro- and nanocomposites with carbon fillers (carbon microfibers, graphite microwhiskers, and carbon nanotubes),” Mech. Comp. Mater., 40, No. 3, 179–190 (2004).

    Article  Google Scholar 

  3. J. J. Rushchitsky, “Wave propagation in a mixture of elastic materials,” Int. Appl. Mech., 14, No. 1, 18–25 (1978).

    Google Scholar 

  4. J. J. Rushchitsky, Elements of Mixture Theory [in Russian], Naukova Dumka, Kyiv (1991).

    Google Scholar 

  5. J. J. Rushchitsky, “Extension of the microstructural theory of two-phase mixtures to composite materials,” Int. Appl. Mech., 36, No. 5, 586–614 (2000).

    Article  Google Scholar 

  6. J. J. Rushchitsky and S. I. Tsurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. im. S. P. Timoshenka, Kyiv (1998).

    Google Scholar 

  7. I. G. Fillippov, “Dynamical theory of relative flow of multicomponent media,” Int. Appl. Mech., 7, No. 10, 1136–1142 (1971).

    Google Scholar 

  8. C. Cattani and J. J. Rushchitsky, and S. V. Sinchilo, “Physical constants for one type of nonlinearly elastic fibrous micro- and nanocomposites with hard and soft nonlinearities,” Int. Appl. Mech., 41, No. 12, 1368–1377 (2005).

    Article  Google Scholar 

  9. I. A. Guz and J. J. Rushchitsky, “Theoretical description of a debonding mechanism in fibrous micro- and nanocomposites,” Int. Appl. Mech., 40, No. 10, 1129–1136 (2004).

    Google Scholar 

  10. I. A. Guz and J. J. Rushchitsky, “Computation simulation of harmonic wave propagation in fibrous micro- and nanocomposites,” Compos. Sci. Technol., 67, 861–866 (2007).

    Article  Google Scholar 

  11. I. A. Guz and J. J. Rushchitsky, “Comparison of characteristics of wave evolution in micro- and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No. 7, 811–821 (2004).

    Article  Google Scholar 

  12. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, “Establishing fundamentals of the mechanics of nanocomposites,” Int. Appl. Mech., 43, No. 3, 247–271 (2007).

    Article  Google Scholar 

  13. J. J. Rushchitsky, “Sensitivity of structural models of composite material to structural length scales,” Int. Appl. Mech., 42, No. 12, 1364–1370 (2006).

    Article  MathSciNet  Google Scholar 

  14. J. J. Rushchitsky and C. Cattani, “Analysis of plane and cylindrical nonlinear hyperelastic waves in materials with internal structure,” Int. Appl. Mech., 42, No. 10, 1099–1119 (2006).

    Article  MathSciNet  Google Scholar 

  15. J. J. Rushchitsky and Ya. V. Simchuk, “Modeling cylindrical waves in nonlinear elastic composites,” Int. Appl. Mech., 43, No. 6., 638–646 (2007).

    Article  Google Scholar 

  16. H. D. McNiven and Y. Mengi, “A mathematical model for the linear dynamic behavior of two-phase periodic materials,” Int. J. Solids Struct., 15, No. 4, 271–280 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  17. H. D. McNiven and Y. Mengi, “A mixture theory for elastic laminated composites,” Int. J. Solids Struct., 15, No. 4, 281–302 (1979).

    Article  MathSciNet  Google Scholar 

  18. H. D. McNiven and Y. Mengi, “Propagation for transient waves in elastic laminated composites,” Int. J. Solids Struct., 15, No. 4, 303–318 (1979).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Priz.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 44, No. 11, pp. 94–98, November 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priz, S.N., Simchuk, Y.V. Analyzing the propagation of a plane wave in a microcomposite material taking inertial interaction into account. Int Appl Mech 44, 1279–1282 (2008). https://doi.org/10.1007/s10778-009-0141-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-009-0141-7

Keywords

Navigation