Skip to main content
Log in

Thermostressed state of a piezoelectric bodywith a plane crack under symmetric thermal load

  • Published:
International Applied Mechanics Aims and scope

Abstract

The paper addresses a thermoelectroelastic problem for a piezoelectric body with an arbitrarily shaped plane crack in a plane perpendicular to the polarization axis under a symmetric thermal load. A relationship between the intensity factors for stress (SIF) and electric displacement (EDIF) in an infinite piezoceramic body with a crack under a thermal load and the SIF for a purely elastic body with a crack of the same shape under a mechanical load is established. This makes it possible to find the SIF and EDIF for an electroelastic material from the elastic solution without the need to solve specific problems of thermoelasticity. The SIF and EDIF for a piezoceramic body with an elliptic crack and linear distribution of temperature over the crack surface are found as an example

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Borodachev, “The thermoelastic problem for an infinite axisymmetrically cracked body,” Int. Appl. Mech., 2, No. 2, 54–58 (1966).

    MathSciNet  Google Scholar 

  2. V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, Vol. 1 of the six-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1989).

    Google Scholar 

  3. K. L. Johnson, Contact Mechanics, Cambridge University Press (1989).

  4. V. S. Kirilyuk, “On the relationship between the stress intensity factors for plane cracks in isotropic and transversely isotropic materials,” Teor. Prikl. Mekh., 29, 3–16 (1999).

    Google Scholar 

  5. G. S. Kit and M. V. Hai, The Method of Potentials in Three-Dimensional Problems of Thermoelasticity for Cracked Bodies [in Russian], Naukova Dumka, Kyiv (1989).

    Google Scholar 

  6. M. P. Savruk, Stress Intensity Factors for Cracked Bodies, Vol. 2 of the four-volume handbook Fracture Mechanics and Strength of Materials [in Russian], Naukova Dumka, Kyiv (1988).

    Google Scholar 

  7. W. Nowacki, Issues of Thermoelasticity [Russian translation], Izd. AN SSSR, Moscow (1962).

    Google Scholar 

  8. V. Z. Parton and B. A. Kudryavtsev, Electroelasticity of Piezoceramic and Conductive Bodies [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  9. Yu. N. Podil’chuk, “Representation of the general solution of statics equations of the electroelasticity of a transversally isotropic piezoceramic body in terms of harmonic functions,” Int. Appl. Mech., 34, No. 7, 623–628 (1998).

    Article  MathSciNet  Google Scholar 

  10. Yu. N. Podil’chuk, “Exact analytical solutions of static electroelastic and thermoelectroelastic problems for a transversely isotropic body in curvilinear coordinate systems,” Int. Appl. Mech., 39, No. 2, 132–170 (2003).

    Article  MathSciNet  Google Scholar 

  11. Yu. N. Podil’chuk and Ya. I. Sokolovskii, “Thermostress in an infinite transversally isotropic medium with an internal elliptical crack,” Int. Appl. Mech., 30, No. 11, 834–840 (1994).

    Article  MATH  Google Scholar 

  12. Y. Murakami, Stress Intensity Factors Handbook, Vol. 2, Pergamon Press, New York (1987).

    Google Scholar 

  13. H. G. Beom, Y. H. Kim, C. Cho, and C. B. Kim, “Asymptotic analysis of an impermeable crack in an electrostrictive material subjected to electric loading,” Int. J. Solids Struct., 43, No. 22–23, 6869–6886 (2006).

    Article  MATH  Google Scholar 

  14. F. M. Chen, M. H. Shen, and S. N. Chen, “An exact thermopiezoelasticity solution for a three-phase composite cylinder,” Int. J. Eng. Sci., 44, No. 20, 1482–1497 (2006).

    Article  MathSciNet  Google Scholar 

  15. W. Q. Chen and C. W. Lim, “3D point force solution for a permeable penny-shaped crack embedded in an infinite transversely isotropic piezoelectric medium,” Int. J. Fract., 131, No. 3, 231–246 (2005).

    Article  Google Scholar 

  16. L. Dai, W. Guo, and X. Wang, “Stress concentration at an elliptic hole in transversely isotropic piezoelectric solids,” Int. J. Solids Struct., 43, No. 6, 1818–1831 (2006).

    Article  MATH  Google Scholar 

  17. M. K. Kassir and G. C. Sih, Three-Dimensional Crack Problems, Vol. 2 of the series Mechanics of Fracture, Nordhoff, Leyden (1975).

    MATH  Google Scholar 

  18. M. K. Kassir, “Thermal crack propagation,” in: Trans. ASME, Ser. D, J. Basic Eng., 93, No. 4, 642–648 (1971).

    Google Scholar 

  19. S. A. Kaloerov, “Determining the intensity factors for stresses, electric-flux density, and electric-field strength in multiply connected electroelastic anisotropic media,” Int. Appl. Mech., 43, No. 6, 631–637 (2007).

    Article  Google Scholar 

  20. V. S. Kirilyuk, “On the relationship between the solutions of static contact problems of elasticity and electroelasticity for a half-space,” Int. Appl. Mech., 42, No. 11, 1256–1269 (2006).

    Article  Google Scholar 

  21. V. S. Kirilyuk, “Stress state of a piezoelectric body with a plane crack under antisymmetric loads,” Int. Appl. Mech., 42, No. 2, 152–161 (2006).

    Article  MathSciNet  Google Scholar 

  22. V. S. Kirilyuk and O. I. Levchuk, “Electrostressed state of a piezoceramic body with a paraboloidal cavity,” Int. Appl. Mech., 42, No. 9, 1011–1020 (2006).

    Article  Google Scholar 

  23. X. F. Li and K. Y. Lee, “Three-dimensional electroelastic analysis of a piezoelectric material with a penny-shaped dielectric crack,” J. Appl. Mech., 71, No. 6, 866–877 (2004).

    Article  MATH  Google Scholar 

  24. F. Shang, M. Kuna, and T. Kitamura, “Theoretical investigation of an elliptical crack in thermopiezoelectric material. Part 1: Analytical development,” Theor. Appl. Fract. Mech., 40, No. 3, 237–246 (2003).

    Article  Google Scholar 

  25. S. Ueda, “A finite crack in a semi-infinite strip of a grade piezoelectric material under electric loading,” Eur. J. Mech., A/Solids, 25, No. 2, 250–259 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  26. Z. K. Wang and B. L. Zheng, “The general solution of three-dimension problems in piezoelectric media,” Int. J. Solids Struct., 32, No. 1, 105–115 (1995).

    Article  MATH  Google Scholar 

  27. B. L. Wang and Y. W. Mai, “Impermeable crack and permeable crack assumptions, which one is more realistic?” J. Appl. Mech., 71, No. 4, 575–578 (2004).

    Article  MATH  ADS  Google Scholar 

  28. T. Y. Zhang and C. F. Gao, “Fracture behaviors of piezoelectric materials,” Theor. Appl. Fract. Mech., 41, No. 1–3, 339–379 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 44, No. 3, pp. 96–108, March 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirilyuk, V.S. Thermostressed state of a piezoelectric bodywith a plane crack under symmetric thermal load. Int Appl Mech 44, 320–330 (2008). https://doi.org/10.1007/s10778-008-0048-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-008-0048-8

Keywords

Navigation