Skip to main content
Log in

Nonlinear creep of unidirectional fibrous composites tensioned along the reinforcement

  • Published:
International Applied Mechanics Aims and scope

Abstract

Creep strains in unidirectional organic-fiber-and organic-glass-fiber-reinforced plastics subject to tension in the reinforcement direction are predicted. Based on homogeneity condition and statistical criteria, it is shown that the creep of the composites is essentially nonlinear. To predict creep strains, use is made of a nonlinear creep model based on a modified Rabotnov’s similarity hypothesis for isochrones and of material constants determined from tests on specimens made of a composite as a whole and specimens made of its separate components, the mixing rule applied in the latter case. The calculated results and the experimental data are in satisfactory agreement

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Vol’mir, V. F. Pavlenko, and A. T. Ponomarev, “Use of composite materials in airframes,” Mech. Comp. Mater., 8, No. 1, 89–95 (1972).

    Google Scholar 

  2. V. P. Golub, Yu. M. Kobzar’, and P. V. Fernati, “Nonlinear creep of viscoelastic epoxy binders under tension,” Teor. Prikl. Mekh., 41, 91–97 (2005).

    Google Scholar 

  3. V. P. Golub, A. D. Pogrebnyak, and I. B. Romanenko, “Smoothing spline-approximations in the identification of creep parameters,” Prikl. Mekh., 33, No. 6, 52–61 (1997).

    MATH  Google Scholar 

  4. A. A. Ily’ushin and B. E. Pobedrya, “On the nonlinear theory of viscoelasticity,” in: Strength and Plasticity [in Russian], Nauka, Moscow (1971), pp. 270–276.

    Google Scholar 

  5. I. M. Kershtein, R. D. Stepanov, and P. M. Ogibalov, “Region of linearity of the deformation properties of contact-molded glass-reinforced plastic,” Mech. Comp. Mater., 6, No. 3, 343–348 (1970).

    Google Scholar 

  6. M. A. Koltunov, “Construction of the nonlinear relations of thermoviscoelasticity,” Mech. Comp. Mater., 3, No. 6, 652–656 (1967).

    Google Scholar 

  7. A. F. Kregers, “Nonpolynomial descriptions of the physical nonlinearity of viscoelastic materials,” Mech. Comp. Mater., 16, No. 5, 520–528 (1980).

    Article  Google Scholar 

  8. R. D. Maksimov and É. Plumé, “Long-term creep of hybrid aramid/glass-fiber-reinforced plastics,” Mech. Comp. Mater., 37, No. 4, 271–280 (2001).

    Article  Google Scholar 

  9. N. I. Malinin, “Some issues of the mechanics of composite materials and products,” Mekh. Komp. Mater., No. 5, 784–789 (1979).

  10. P. M. Ogibalov and B. E. Pobedrya, “Nonlinear mechanics of polymers,” Mech. Comp. Mater., 8, No. 1, 8–17 (1972).

    Google Scholar 

  11. Yu. N. Rabotnov, Elements of the Hereditary Mechanics of Solids [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  12. Yu. N. Rabotnov, A. Kh. Papernik, and E. I. Stepanychev, “Application of the nonlinear theory of heredity to the description of time effects in polymeric materials,” Mech. Comp. Mater., 7, No. 1, 63–73 (1971).

    Google Scholar 

  13. M. I. Rozovskii, “The application of nonlinear functionals to the construction of the equations of state of materials with memory,” Int. Appl. Mech., 6, No. 8, 812–816 (1970).

    Google Scholar 

  14. A. M. Skudra, F. Ya. Bulavs, and K. A. Rotsens, Creep and Static Fatigue of Reinforced Plastics [in Russian], Zinatne, Riga (1971).

    Google Scholar 

  15. E. A. Sokolov and R. D. Maksimov, “Possibilities of predicting the creep of a polymeric fiber-reinforced plastic from the properties of the components,” Mech. Comp. Mater., 14, No. 6, 807–813 (1978).

    Google Scholar 

  16. M. N. Stepnov, Statistical Methods for the Treatment of Mechanical Test Data [in Russian], Mashinostroenie, Moscow (1985).

    Google Scholar 

  17. Yu. V. Suvorova, “Taking temperature into account in hereditary theory of elastoplastic media,” Strength of Materials, 9, No. 2, 163–168 (1977).

    Article  Google Scholar 

  18. Yu. V. Suvorova, “Nonlinear effects during the deformation of hereditary media,” Mech. Comp. Mater., 13, No. 6, 814–818 (1977).

    Google Scholar 

  19. Yu. V. Suvorova and S. I. Alekseeva, “Nonlinear model of an isotropic hereditary medium in state of complex stress,” Mech. Comp. Mater., 29, No. 5, 443–447 (1993).

    Article  Google Scholar 

  20. Yu. V. Suvorova and S. I. Alekseeva, “Nonlinear hereditary model including temperature effects in various stress states,” Mech. Comp. Mater., 32, No. 1, 53–60 (1996).

    Article  Google Scholar 

  21. Yu. M. Tarnopolskii, “Modern trends in the development of fibrous composites,” Mech. Comp. Mater., 8, No. 3, 473–481 (1972).

    Google Scholar 

  22. Yu. S. Urzhumtsev, Ch. A. Daugete, and A. V. Kalproze, “Nonlinear thermoviscoelasticity of polymeric materials belonging to the class of rheologically simple bodies,” Mech. Comp. Mater., 10, No. 5, 675–680 (1974).

    Google Scholar 

  23. T. Fujii and M. Zako, Fracture Mechanics of Composite Materials [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  24. R. A. Schapery, “Viscoelastic behavior and analysis of composite materials,” in: Composite Materials, Vol. 2, Academic Press, New York, pp. 84–168 (1974).

    Google Scholar 

  25. L. Boltzmann, “Zur Theorie der elastischen Nachwirkung,” Ann. Phys. Chem., No. 7, 275–315 (1876).

  26. W. Comboonsong, F. K. Ko, and H. G. Harris, “Ductile hybrid fiber reinforced plastic (FRP) rebar for Concrete structures: Design methodology,” ACI Mater. J., 95, No. 6, 232–239 (1998).

    Google Scholar 

  27. V. P. Golub, Yu. M. Kobzar’, and P. V. Fernati, “An approach to constructing of a rheological model of strain-hardening media,” Int. Appl. Mech., 40, No. 7, 776–784 (2004).

    Article  Google Scholar 

  28. V. P. Golub, Yu. M. Kobzar’, and P. V. Fernati, “Calculating linear creep strains of viscoelastic fibers under tension,” Int. Appl. Mech., 41, No. 5, 543–551 (2005).

    Article  Google Scholar 

  29. V. P. Golub, Yu. M. Kobzar’, and P. V. Fernati, “Nonlinear creep of viscoelastic organic fibers under tension,” Int. Appl. Mech., 41, No. 7, 793–804 (2005).

    Article  Google Scholar 

  30. V. P. Golub, V. I. Krizhanovskii, A. D. Pogrebnyak, and A. V. Romanov, “A method of modeling the interaction of creep and high-cycle fatigue,” Int. Appl. Mech., 41, No. 1, 14–25 (2005).

    Article  Google Scholar 

  31. A. A. Kaminskii and M. F. Selivanov, “A method for determining the viscoelastic characteristics of composites,” Int. Appl. Mech., 41, No. 5, 469–480 (2005).

    Article  MathSciNet  Google Scholar 

  32. R. Tepfers, V. Tamuzs, R. Apinis, U. Vilks, and J. Modniks, “Ductility of nonmetallic hybrid fibre composite reinforcement for concrete,” Mech. Comp. Mater., 32, No. 2, 167–179 (1996).

    Article  Google Scholar 

  33. V. Volterra, Lecons sur les Fonctions de Lignes, Gauther-Villard, Paris (1913).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 43, No. 5, pp. 20–34, May 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golub, V.P., Kobzar’, Y.M. & Fernati, P.V. Nonlinear creep of unidirectional fibrous composites tensioned along the reinforcement. Int Appl Mech 43, 491–503 (2007). https://doi.org/10.1007/s10778-007-0046-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-007-0046-2

Keywords

Navigation