Skip to main content
Log in

Computational modeling of the cold compaction of ceramic powders

  • Published:
International Applied Mechanics Aims and scope

Abstract

A finite-element model of the cold compaction of ceramic powders by uniaxial pressing is developed and validated by comparison with experimental data. The mechanical behavior of processing powders is assumed according to the modified Drucker-Prager cap model. The frictional effects and the mechanical behavior of tools involved in the process are taken into account. The proposed model allows evaluation of the density distribution into the processed part, as well as stress and strain fields. Variations of the density distribution due to the unloading and the ejection of the part are evaluated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Guz, “On foundation of non-destructive method of determination of three-axial stresses in solids,” Int. Appl. Mech., 37, No. 7, 899–905 (2001).

    Article  MathSciNet  Google Scholar 

  2. A. N. Guz and F. G. Makhort, “The physical fundamentals of the ultrasonic nondestructive stress analysis of solids,” Int. Appl. Mech., 36, No. 9, 1119–1149 (2000).

    Article  Google Scholar 

  3. J. J. Rushchitsky, C. Cattani, and E. V. Terletskaya, “Wavelet analysis of the evolution of a solitary wave in composite material,” Int. Appl. Mech., 40, No. 3, 311–318 (2004).

    Article  Google Scholar 

  4. C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, “Comparative analysis of the profile evolutions of an elastic harmonic wave caused by the second and third harmonics,” Int. Appl. Mech., 40, No. 2, 183–189 (2004).

    Article  Google Scholar 

  5. C. Cattani and J. J. Rushchitsky, “Plane waves in cubically nonlinear elastic media,” Int. Appl. Mech., 38, No. 11, 1361–1365 (2002).

    Article  MathSciNet  Google Scholar 

  6. C. Cattani and J. J. Rushchitsky, “Cubically nonlinear versus quadratically nonlinear elastic waves: Main wave effects,” Int. Appl. Mech., 39, No. 12, 1361–1399 (2003).

    Article  MathSciNet  Google Scholar 

  7. J. J. Rushchitsky, C. Cattani, and E. V. Terletskaya, “Wavelet analysis of a single pulse in a linearly elastic composite,” Int. Appl. Mech., 41, No. 4, 374–380 (2005).

    Article  Google Scholar 

  8. I. Aydin, B. J. Briscoe, and K. Y. Şanlitürk, “The internal form of compacted ceramic components: a comparison of a finite element modelling with experiment,” Powder Tech., 89, 239–254 (1996).

    Article  Google Scholar 

  9. A. Bejarano, M. D. Riera, and J. M. Prado, “Simulation of the compaction process of a two-level powder metallurgical part,” J. Mater. Proc. Tech., 143–144, 34–40 (2003).

    Article  Google Scholar 

  10. H. Chtourou, M. Guillot, and A. Gakwaya, “Modeling of the metal powder compaction process using the cap model. Part I. Experimental material characterization and validation,” Int. J. Solids Struct., 39, 1059–1075 (2002).

    Article  MATH  Google Scholar 

  11. H. Chtourou, M. Guillot, and A. Gakwaya, “Modeling of the metal powder compaction process using the cap model. Part II. Numerical implementation and practical application,” Int. J. Solids Struct., 39, 1077–1096 (2002).

    Article  Google Scholar 

  12. S. C. Lee and K. T. Kim, “Densification behavior of aluminum alloy powder under cold compaction,” Int. J. Mech. Sci., 44, 1295–1308 (2002).

    Article  Google Scholar 

  13. R. W. Lewis and A. R. Khoei, “Numerical modelling of large deformation in metal powder forming,” Comp. Math. Appl. Mech. Eng., 159, 291–328 (1998).

    Article  MATH  Google Scholar 

  14. D. H. Zeuch, J. M. Grazier, J. R. Argüello, and K. G. Ewsuk, “Mechanical properties and shear failure surfaces for two alumina powders in triaxial compression,” J. Mater. Sci., 36, 2911–2924 (2001).

    Article  Google Scholar 

  15. I. C. Sinka, J. C. Cunningham, and A. Zavaliangos, “The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: A validation study of the Drucker-Prager cap model,” Powder Technology, 133, 33–43 (2003).

    Article  Google Scholar 

  16. A. Michrafy, D. Ringenbacher, and P. Tchoreloff, “Modelling the compaction behavior of powders: Application to pharmaceutical powders,” Powder Technology, 127, 257–266 (2002).

    Article  Google Scholar 

  17. N. A. Fleck, L. T. Kuhn, and R. M. McMeeking, “Yielding of metal powder bonded by isolated contacts,” J. Mech. Phys. Solids, 40, 1139–1162 (1992).

    Article  MATH  Google Scholar 

  18. L. T. Kuhn and R. M. McMeeking, “Power law creep of powder bonded by isolated contacts,” J. Mech. Phys. Solids, 34, 563–573 (1992).

    Google Scholar 

  19. O. Skrinjar and P. L. Larsson, “Cold compaction of composite powders with size ratio,” Acta Materialia, 52, 1871–1884 (2004).

    Article  Google Scholar 

  20. L. P. Khoroshun and D. V. Babich, “Stability of plates made of a granular composite with damageable components,” Int. Appl. Mech., 40, No. 7, 803–809 (2004).

    Article  Google Scholar 

  21. S. D. Akbarov and A. N. Guz, “Continuum approaches in the mechanics of curved composites and associated problems for structural members,” Int. Appl. Mech., 38, No. 11, 1285–1308 (2002).

    Article  Google Scholar 

  22. S. D. Akbarov and A. N. Guz, “Mechanics of curved composites (piecewise-homogeneous body model),” Int. Appl. Mech., 38, No. 12, 1415–1439 (2002).

    Article  Google Scholar 

  23. R. W. Lewis and A. R. Khoei, “A plasticity model for metal powder forming processes,” Int. J. Plasticity, 17, 1659–1692 (2001).

    Article  MATH  Google Scholar 

  24. C. Gu, M. Kim, and L. Anand, “Constitutive equation for metal powders: application to powder forming processes,” Int. J. Plasticity, 17, 147–209 (2001).

    Article  MATH  Google Scholar 

  25. A. F. Bulat, “Rock deformation problems,” Int. Appl. Mech., 40, No. 12, 1311–1322 (2004).

    Article  Google Scholar 

  26. A. R. Khoei and A. R. Azami, “A single cone-cap plasticity with an isotropic hardening rule for powder materials,” Int. J. Mech. Sci., 47, 94–109 (2005).

    Article  Google Scholar 

  27. F. L. DiMaggio and I. S. Sandler, “Material models for granular soils,” J. Eng. Mech. Divis. ASCE, 935–950 (1971).

  28. D. D. Ivlev, “Perfect plasticity theory: State of the art and development trends,” Int. Appl. Mech., 39, No. 11, 1241–1270 (2003).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Prikladnaya Mekhanika, Vol. 42, No. 10, pp. 135–143, October 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlone, P., Palazzo, G.S. Computational modeling of the cold compaction of ceramic powders. Int Appl Mech 42, 1195–1201 (2006). https://doi.org/10.1007/s10778-006-0191-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0191-z

Keywords

Navigation