Skip to main content
Log in

Influence of the coupling of mechanical and thermal fields on the amplitude-frequency characteristics of a cylinder

  • Published:
International Applied Mechanics Aims and scope

Abstract

A dynamic boundary-value problem of coupled thermoelasticity for a finite cylinder with mixed boundary conditions is solved. The problem is reduced to a system of four singular integral equations solved by the mechanical-quadrature method. A numerical experiment is conducted to obtain amplitude-frequency characteristics for finite cylinders with different cross sections. The effect of thermoelastic coupling on stress distribution is assessed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Bondar’, “The exact solution of a dynamic problem of coupled thermoelasticity (antisymmetric case),” in: Proc. Int. Sci. Conf. on Mathematical Problems in Engineering Mechanics [in Ukrainian], Dnepropetrovsk, April 19–22 (2005), p. 71.

  2. P. Yu. Borodin, M. P. Galanin, and I. V. Dubovitskii, “Numerical solution for a layered elastic medium under impulsive thermal load: Spherically symmetric and plane cases,” in: Preprint No. 41, Inst. Prikl. Mat. RAN, Moscow (1997), pp. 1–29.

    Google Scholar 

  3. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  4. I. I. Vorovich and O. S. Malkina, “Stress state of a thick plate,” Prikl. Mat. Mekh., 31, No. 2, 230–241 (1967).

    Google Scholar 

  5. V. F. Gribanov and N. R. Panichkin, Coupled and Dynamic Problems of Thermoelasticity [in Russian], Mashinostroenie, Moscow (1984).

    Google Scholar 

  6. V. I. Danilovskaya, “Thermal stresses in an elastic half-space with abruptly heated boundary,” Prikl. Mat. Mekh., 14, No. 316–318 (1950).

    Google Scholar 

  7. V. G. Karnaukhov, Coupled Problems of Thermoviscoelasticity [in Russian], Naukova Dumka, Kyiv (1982).

    Google Scholar 

  8. A. D. Kovalenko, Thermoelasticity [in Russian], Vyshcha Shkola, Kyiv (1975).

    Google Scholar 

  9. A. S. Kosmodamianskii and V. A. Shaldyrvan, Thick Multiply Connected Plates [in Russian], Naukova Dumka, Kyiv (1978).

    Google Scholar 

  10. R. Kushnir, Ya. Maksimovich, and T. Solyar, “Thermoelastic state of multiply connected plates losing heat,” Mashinoznavstvo, No. 3 (81), 13–17 (2004).

  11. M. A. Lavrent’ev and B. V. Shabat, Methods of Complex-Variable Theory [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  12. A. I. Lurie, “Thick plate theory revisited,” Prikl. Mat. Mekh., 6, No. 2/3, 151–169 (1942).

    Google Scholar 

  13. A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  14. M. V. Molotov and I. D. Kil’, “Coupled dynamic problem of thermoelasticity for a half-space,” Prikl. Mat. Mekh., 60, No. 4, 687–696 (1996).

    Google Scholar 

  15. Ya. S. Podstrigach and Yu. M. Kolyano, Generalized Thermomechanics [in Russian], Naukova Dumka, Kyiv (1976).

    Google Scholar 

  16. V. K. Prokopov, “Review of studies on homogeneous solutions in the theory of elasticity and their applications,” Tr. Leningr. Politekhn. Inst., 279, 31–46 (1967).

    Google Scholar 

  17. L. A. Fil’shtinskii, “Tension of a layer with tunnel cuts,” Prikl. Mat. Mekh., 59, No. 5, 827–835 (1995).

    MathSciNet  Google Scholar 

  18. L. Fil’shtinskii and O. Bondar, “Coupled thermoelastic fields in a layer subject to concentrated excitation (skew-symmetric solution),” Mashynoznavstvo, No. 5 (84), 30–38 (2004).

    Google Scholar 

  19. L. A. Fil’shtinskii and A. Ibeda, “Stationary wave process in an elastic layer with a cavity,” Vestn. DonGU, Ser. A, No. 1, 72–79 (2003).

  20. H. Cho, G. A. Kardomateas, and C. S. Valle, “Elastodynamic solution for the thermal shock stresses in an orthotropic thick cylindrical shell,” Trans. ASME, J. Appl. Mech., 65, No. 1, 184–193 (1998).

    Article  Google Scholar 

  21. L. A. Fil’shtinskii, Yu. D. Kovalev, and E. S. Ventsel, “Solution of the elastic boundary-value problems for a layer with tunnel stress raisers,” Int. J. Solids Struct., No. 39, 6385–6402 (2002).

    Google Scholar 

  22. L. A. Fil’shtinskii and Yu. D. Kovalev, “Solving the three-dimensional elastic problem for a cylinder of finite length subject to bending,” Int. Appl. Mech., 40, No. 5, 532–536 (2004).

    Article  Google Scholar 

  23. Ya. M. Grigorenko and L. S. Rozhok, “Stress analysis of orthotropic hollow noncircular cylinders,” Int. Appl. Mech., 40, No. 6, 679–685 (2004).

    Article  Google Scholar 

  24. Ya. M. Grigorenko and L. S. Rozhok, “Stress solution for transversely isotropic corrugated hollow cylinders,” Int. Appl. Mech., 41, No. 3, 277–282 (2005).

    Article  Google Scholar 

  25. V. G. Karnaukhov, “Thermal failure of polymeric structural elements under monoharmonic deformation,” Int. Appl. Mech., 40, No. 6, 622–655 (2004).

    Article  MathSciNet  Google Scholar 

  26. V. G. Karnaukhov and Yu. V. Revenko, “Dissipative heating of a viscoelastic cylinder under a load steadily moving over its surface,” Int. Appl. Mech., 41, No. 2, 129–136 (2005).

    Article  Google Scholar 

  27. W. S. Kim, L.G. Hector, Jr., and R. B. Hetnarski, “Thermoelastic stresses in a bounded layer due to repetitively pulsed laser radiation,” Acta Mech., 125, No. 1–4, 107–128 (1997).

    Article  MATH  Google Scholar 

  28. C. S. Suh and C. P. Burger, “Effects of thermomechanical coupling and relaxation times on wave spectrum in dynamic theory of generalized thermoelasticity,” Trans. ASME, J. Appl. Mech., 65, No. 3, 605–613 (1998).

    Article  Google Scholar 

  29. N. Sumi, “Propagation of thermal and thermal stress waves in finite medium under laser-pulse heating,” Trans Jap. Soc. Mech. Eng., 64, No. 625, 2257–2262 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 42, No. 10, pp. 86–95, October 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fil’shtinskii, L.A., Bondar’, A.V. Influence of the coupling of mechanical and thermal fields on the amplitude-frequency characteristics of a cylinder. Int Appl Mech 42, 1151–1159 (2006). https://doi.org/10.1007/s10778-006-0187-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0187-8

Keywords

Navigation