Skip to main content
Log in

Stabilization of a wheeled robotic vehicle subject to dynamic effects

  • Published:
International Applied Mechanics Aims and scope

Abstract

The paper addresses the problem of designing a stabilization system for a wheeled robotic vehicle with one steering wheel subject to dynamic effects. A solution of the problem is given for the case of coasting. The admissible error of the robot speed in generating a feedback signal is estimated. The general problem of stabilization with allowance for dynamic effects is considered

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Bryson and Yu-Chi Ho, Applied Optimal Control, Hemisphere, Washington, DC (1975).

    Google Scholar 

  2. R. W. Brockett, “Lie algebras and Lie groups in control theory,” in: D. Q. Mayne and R. W. Brockett (eds.), Geometric Methods in System Theory, Proc. NATO Adv. Study Inst. (August 27–September 7, 1973, London), D. Reidel Publ. Comp., Dordrecht-Boston (1973), pp. 43–82.

    Google Scholar 

  3. H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley, New York (1972).

    MATH  Google Scholar 

  4. V. B. Larin, “Stabilization of nonholonomic systems,” Probl. Upravl. Inform., No. 1–2, 218–230 (2006).

  5. F. A. Aliev and V. B. Larin, Optimization of Linear Control Systems: Analytical Methods and Computational Algorithms, Gordon and Breach, Amsterdam (1998).

    MATH  Google Scholar 

  6. A. M. Block, Nonholonomic mechanics and control. Interdisciplinary Applied Mathematics, 24. Systems and Control, Springer-Verlag, New York (2003).

    Google Scholar 

  7. A.M. Bloch, M. Reyhanoglu, and N. H. McClamroch, “Control and stabilization of nonholonomic dynamic systems,” IEEE Trans. Automat. Control, 37, No. 11, 1746–1757 (1992).

    Article  MathSciNet  Google Scholar 

  8. R. W. Brockett, “Pattern generation and the control of nonlinear systems,” IEEE Trans. Automat. Control, 48, No. 10, 1699–1711 (2003).

    Article  MathSciNet  Google Scholar 

  9. C. Conudas de Wit and O. J. Sordalen, “Exponential stabilization of mobile robots with nonholonomic constraints,” IEEE Trans. Automat. Control, 37, No. 11, 1791–1797 (1992).

    Article  MathSciNet  Google Scholar 

  10. Fazal-ur-Rehman, “Steering of nonholonomic mobile robots by using differential geometric approach,” Appl. Comput. Math., 1, No. 2, 131–141 (2002).

    MathSciNet  Google Scholar 

  11. V. B. Larin, “Stabilizing the motion of a system with nonholonomic constrains,” Int. Appl. Mech., 34, No. 7, 683–693 (1998).

    MathSciNet  Google Scholar 

  12. V. B. Larin, “Control of manipulators and wheeled transport robots as systems of rigid bodies,” Int. Appl. Mech., 36, No. 4, 449–481 (2000).

    MathSciNet  Google Scholar 

  13. V. B. Larin, “Control of the nonstationary motion of a hopping machine (path tracking),” Int. Appl. Mech., 39, No. 2, 232–241 (2003).

    Article  MathSciNet  Google Scholar 

  14. V. B. Larin, “A 3D model of one-legged hopping machine,” Int. Appl. Mech., 40, No. 5, 583–591 (2004).

    Article  MathSciNet  Google Scholar 

  15. V. B. Larin, “Motion planning for a wheeled robot (kinematic approximation),” Int. Appl. Mech., 41, No. 2, 187–196 (2005).

    Article  Google Scholar 

  16. V. B. Larin, “Control of wheeled robots,” Int. Appl. Mech., 41, No. 4, 441–448 (2005).

    Article  MathSciNet  Google Scholar 

  17. V. B. Larin, “Motion planning for a mobile robot with two steerable wheels,” Int. Appl. Mech., 41, No. 5, 552–559 (2005).

    Article  MathSciNet  Google Scholar 

  18. V. B. Larin, “Motion planning of mobile robots,” Appl. Comp. Math., 4, No. 1, 10–19 (2005).

    MathSciNet  Google Scholar 

  19. V. B. Larin, “Motion planning in the presence of nonholonomic constraints,” Int. J. Appl. Math. Mech., 2, 96–108 (2005).

    Google Scholar 

  20. V. B. Larin and V. M. Matiyasevich, “A control algorithm for a 3D hopping machine,” Int. Appl. Mech., 40, No. 4, 462–470 (2004).

    Article  MathSciNet  Google Scholar 

  21. R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: Steering using sinusoids,” IEEE Trans. Automat. Control, 38, No. 5, 700–716 (1993).

    Article  MathSciNet  Google Scholar 

  22. I. R. Peterson and C. Y. Hollor, “A Riccati equation approach to the stabilization of uncertain linear systems,” Automatica, 22, No. 4, 397–411 (1986).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 42, No. 9, pp. 116–126, September 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larin, V.B. Stabilization of a wheeled robotic vehicle subject to dynamic effects. Int Appl Mech 42, 1061–1070 (2006). https://doi.org/10.1007/s10778-006-0177-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0177-x

Keywords

Navigation