Skip to main content
Log in

Electroelastic stress state of a piezoceramic body with a paraboloidal cavity

  • Published:
International Applied Mechanics Aims and scope

Abstract

The static equilibrium of an electroelastic transversely isotropic space with a paraboloidal cavity under axisymmetric mechanical and electric loads is analyzed. Paraboloidal coordinates and special harmonic functions are used to obtain an exact solution. The distribution of stresses and electric-flux density over the surface of the cavity subject to internal pressure is analyzed as an example

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Grigolyuk, L. A. Fil’shtinskii, and Yu. D. Kovalev, “Tension of a piezoceramic layer weakened by through tunnel cavities,” Dokl. RAN, 385, No. 1, 61–63 (2002).

    Google Scholar 

  2. V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, Vol. 1 of the six-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  3. S. A. Kaloerov, A. I. Baeva, and Yu. A. Glushchenko, “Two-dimensional problem of electroelasticity for a multiply connected piezoelectric body with cavities and flat cracks,” Teor. Prikl. Mekh., 32, 64–79 (2001).

    Google Scholar 

  4. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 2, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  5. V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity of Piezoelectric and Electroconductive Bodies [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  6. Yu. N. Podil’chuk, “On the stress-strain state of a transversally isotropic body with a paraboloidal inclusion,” Int. Appl. Mech., 34, No. 11, 1079–1085 (1998).

    Google Scholar 

  7. Yu. N. Podil’chuk, “Electroelastic equilibrium of transversally isotropic, piezoceramic media containing cavities, inclusions, and cracks,” Int. Appl. Mech., 34, No. 10, 1023–1034 (1998).

    MathSciNet  Google Scholar 

  8. K. V. Solyanik-Krassa, Axisymmetric Problem of Elasticity [in Russian], Stroitekhizdat, Moscow (1987).

    Google Scholar 

  9. W. Chen and T. Shioya, “Fundamental solution for a penny-shaped crack in a piezoelectric medium,” J. Mech. Phys. Solids, 47, 1459–1475 (1999).

    Article  MathSciNet  Google Scholar 

  10. W. Q. Chen and C. W. Lim, “3D point force solution for a permeable penny-shaped crack embedded in an infinite transversely isotropic piezoelectric medium,” Int. J. Fract., 131, 231–246 (2005).

    Article  Google Scholar 

  11. M. L. Dunn and M. Taya, “Electroelastic field concentrations in and around inhomogeneties in piezoelectric solids,” Trans. ASME, Ser. E, J. Appl. Mech., 61, 474–475 (1994).

    Google Scholar 

  12. S. A. Kaloerov, A. I. Baeva, and Yu. A. Glushchenko, “Two-dimensional electroelastic problem for a multiply connected piezoelectric body,” Int. Appl. Mech., 39, No. 1, 77–84 (2003).

    Article  Google Scholar 

  13. I. F. Kirichok, “Flexural vibrations and heating of a circular bimorph piezoplate under electric excitation applied to nonuniformly electroded surfaces,” Int. Appl. Mech., 41, No. 9, 1037–1042 (2005).

    Article  Google Scholar 

  14. V. S. Kirilyuk, “Stress state of an elastic orthotropic medium with an elliptic crack under tension and shear,” Int. Appl. Mech., 41, No. 4, 358–366 (2005).

    Article  Google Scholar 

  15. V. S. Kirilyuk, “On the stress of a piezoceramic body with a flat crack under symmetric loads,” Int. Appl. Mech., 41, No. 11, 1263–1271 (2005).

    Article  Google Scholar 

  16. Yu. N. Podil’chuk and I. G. Kovalenko, “Thermoelectroelastic state of a piezoceramic body with a spheroidal cavity in a uniform heat flow,” Int. Appl. Mech., 41, No. 11, 1254–1262 (2005).

    Article  Google Scholar 

  17. F. Shang, M. Kuna, and M. Abendroth, “Finite element analysis of a three-dimensional crack problem in piezoelectric structures,” Eng. Fract. Mech., 70, 143–160 (2003).

    Article  Google Scholar 

  18. H. Sosa and N. Khutoryansky, “New developments concerning piezoelectric materials with defects,” Int. J. Solids Struct., 33, No. 23, 3399–3414 (1996).

    Article  MathSciNet  Google Scholar 

  19. Z. K. Wang and S. H. Huang, “Stress intensification near an elliptical border,” Theor. Appl. Fract. Mech., 22, 229–237 (1995).

    Article  MathSciNet  Google Scholar 

  20. Z. K. Wang and B. L. Zheng, “The general solution of three-dimensional problems in piezoelectric media,” Int. J. Solids Struct., 32, 105–115 (1995).

    Article  Google Scholar 

  21. J. Z. Zuo and G. C. Sih, “Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics,” Theor. Appl. Fract. Mech., 34, 17–33 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 42, No. 9, pp. 59–69, September 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirilyuk, V.S., Levchuk, O.I. Electroelastic stress state of a piezoceramic body with a paraboloidal cavity. Int Appl Mech 42, 1011–1020 (2006). https://doi.org/10.1007/s10778-006-0171-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0171-3

Keywords

Navigation