International Applied Mechanics

, Volume 42, Issue 6, pp 617–628 | Cite as

On models in the theory of stability of multiwalled carbon nanotubes in matrix

  • A. N. Guz
  • I. A. Guz
Article

Abstract

Models in the theory of stability of multiwalled carbon nanotubes in a polymer matrix are justified. Some results on the fracture mechanics of nanocomposites are presented. New areas of research in mechanics suggested by a group of well-known scientists are discussed

Keywords

MWCNT CSCNF nanocomposites stability in matrix three-dimensional linearized theory of stability of deformable bodies fracture mechanics of nanocomposites new research areas in mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born and K. Huang, Dynamic Theory of Crystal Lattices, Oxford University Press, London (1954).Google Scholar
  2. 2.
    A. N. Guz, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  3. 3.
    A. N. Guz, Stability of Elastic Bodies under Finite Strains [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  4. 4.
    A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kiev (1986).Google Scholar
  5. 5.
    A. N. Guz, Mechanics of Compressive Failure of Composite Materials [in Russian], Naukova Dumka, Kiev (1990).Google Scholar
  6. 6.
    A. N. Guz, Description and study of some nonclassical problems of fracture mechanics and related mechanisms,” Int. Appl. Mech., 36, No. 12, 1537–1564 (2000).CrossRefGoogle Scholar
  7. 7.
    A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On the mechanics of nanomaterials,” Int. Appl. Mech., 39, No. 11, 1271–1293 (2003).CrossRefGoogle Scholar
  8. 8.
    A. N. Guz (ed.), Mechanics of Composite Materials [in Russian], in 12 vols., Naukova Dumka (Vols. 1–4), A.S.K. (Vols. 5–12), Kiev (1993–2003).Google Scholar
  9. 9.
    C. Bower, W. Zhu, S. N. Jin, and O. Zhou, “Plasma-induced alignment of carbon nanotubes,” Appl. Phys. Lett., 77, 830–832 (2000).CrossRefADSGoogle Scholar
  10. 10.
    B. Budiansky, “Micromechanics,” Composites and Structures, 16, No. 1, 3–13 (1983).CrossRefMATHGoogle Scholar
  11. 11.
    B. Budiansky and N. A. Fleek, “Compressive kinking of fibre composites: a topical review,” Appl. Mech. Rev., 47, No. 6, Part 2, 246–250 (1994).CrossRefGoogle Scholar
  12. 12.
    B. Budiansky, N. A. Fleek, and I. C. Amazigo, “On kink-band propagation in fiber composites,” J. Mech. Phys. Solids, 46, 1637–1653 (1998).MathSciNetCrossRefMATHADSGoogle Scholar
  13. 13.
    T. W. Chou, R. L. McCullough, and R. B. Pipes, “Composites,” Sci. Am., 254, 193–203 (1985–1986).Google Scholar
  14. 14.
    N. A. Fleek, “Compressive failure of fiber composites,” in: Advances in Applied Mechanics, 33, Academic Press, New York (1997), pp. 43–119.Google Scholar
  15. 15.
    A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin-Heidelberg-New York (1999).MATHGoogle Scholar
  16. 16.
    A. N. Guz, “Three-dimensional theory of stability of carbon nanotube in matrix,” Int. Appl. Mech., 42, No. 1, 19–31 (2006).CrossRefMathSciNetGoogle Scholar
  17. 17.
    A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Two-dimensional stability problem for two interacting short fibers in a composite: In-line arrangement,” Int. Appl. Mech., 40, No. 9, 994–1001 (2004).CrossRefGoogle Scholar
  18. 18.
    A. N. Guz, A. A. Rodger, and I. A. Guz, “Developing a compressive failure theory for nanocomposites,” Int. Appl. Mech., 41, No. 3, 233–255 (2005).CrossRefGoogle Scholar
  19. 19.
    I. A. Guz and J. J. Rushchitsky, “Comparing the evolution characteristics of waves in nonlinearly elastic micro-and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No. 7, 785–793 (2004).CrossRefGoogle Scholar
  20. 20.
    I. A. Guz and J. J. Rushchitsky, “Theoretical description of a delamination mechanism in fibrous micro-and nanocomposites,” Int. Appl. Mech., 40, No. 10, 1129–1136 (2004).Google Scholar
  21. 21.
    Ch. Jochum and J.-C. Grandidier, “Microbuckling elastic modeling approach of a single carbon fibre embedded in an epoxy matrix,” Composites Science and Technology, 64, 2441–2449 (2004).CrossRefGoogle Scholar
  22. 22.
    M. E. Kassner, Sia Nemat-Nasser, Shigang Suo, et al., “New directions in mechanics,” Mech. Mater., 37, 231–259 (2005).CrossRefGoogle Scholar
  23. 23.
    Kin-Tak Lau and D. Hui, “The revolutionary creation of new advanced materials—carbon nanotube composite,” Composites, Part B: Engineering, 33, 263–277 (2002).CrossRefGoogle Scholar
  24. 24.
    O. Lourie, D. M. Cox, and H. D. Wagner, “Buckling and collapse of embedded carbon nanotubes,” Phys. Rev. Lett., 81, No. 8, 1638–1641 (1998).CrossRefADSGoogle Scholar
  25. 25.
    “Micromechanics of composite materials: focus on Ukrainian research,” Appl. Mech. Rev. (special issue), 45, No. 2, 13–101 (1992).Google Scholar
  26. 26.
    G. M. Olegard, R. B. Pipes, and P. Hubert, “Comparison of two models of SWCN polymer composites,” Composites Science and Technology, 64, No. 7, 1011–1020 (2004).CrossRefGoogle Scholar
  27. 27.
    H. R. Shetty and T. W. Chou, “Mechanical properties and failure characteristics of FP-aluminum and W-aluminum composites,” Metall. Trans. A, 16, No. 5, 853–864 (1985).Google Scholar
  28. 28.
    N. H. Tai, M. K. Yeh, and J. H. Liu, “Enhancement of the mechanical properties of carbon nanotube composites using a carbon nanotube network as the reinforcement,” Carbon, 42, Nos. 12–13, 2774–2777 (2004).CrossRefGoogle Scholar
  29. 29.
    E. T. Thostenson and T. W. Chou, “On the elastic properties of carbon nanotube-based composites: modeling and characterization,” J. Phys. D, 36, No. 5, 573–582 (2003).CrossRefADSGoogle Scholar
  30. 30.
    E. T. Thostenson and T. W. Chou, “Nanotube buckling in aligned multi-wall carbon nanotube composites,” Carbon, 42, No. 14, 3015–3018 (2004).CrossRefGoogle Scholar
  31. 31.
    E. T. Thostenson, Li Chunyu, and T. W. Chou, “Nanocomposites in context. (Review),” Composites Science and Technology, 65, 491–516 (2005).CrossRefGoogle Scholar
  32. 32.
    M. A. Wadee, G. W. Hunt, and M. A. Peletier, “Kink band instability in layered structures,” J. Mech. Phys. Solids, 52, 1071–1091 (2004).CrossRefMATHADSGoogle Scholar
  33. 33.
    Y. Iwahori, S. Ishiwata, T. Sumizawa, and T. Ishikawa, “Mechanical properties improvements in two-phase and three-phase composites using carbon nano-fiber dispersed resin,” Composites Part A: Appl. Sci. Manufact., 36, 1430–1439 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. N. Guz
    • 1
  • I. A. Guz
    • 2
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKiev
  2. 2.University of AberdeenUnited Kingdom

Personalised recommendations