Skip to main content
Log in

Nonlinear vibration analysis of viscoelastic plates based on a refined Timoshenko theory

  • Published:
International Applied Mechanics Aims and scope

Abstract

Nonlinear vibrations of viscoelastic orthotropic and isotropic shells are mathematically modeled using a geometrically nonlinear Timoshenko theory. Nonlinear problems are solved by using the Bubnov-Galerkin method and a numerical method based on quadrature formulas. Results obtained from different theories are compared and analyzed. For each problem, the Bubnov-Galerkin method is tested for convergence. The influence of the viscoelasticity and inhomogeneity of materials on the vibrations of plates is demonstrated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Ambartsumyan, Theory of Anisotropic Plates [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  2. F. B. Badalov and Kh. Éshmatov, “Investigation of nonlinear vibrations of viscoelastic plates with initial imperfections,” Int. Appl. Mech., 26, No. 8, 799–804 (1990).

    MATH  Google Scholar 

  3. F. B. Badalov, Kh. Éshmatov, and U. I. Akbarov, “Stability of a viscoelastic plate under dynamic loading,” Int. Appl. Mech., 27, No. 9, 892–899 (1991).

    MATH  Google Scholar 

  4. F. B. Badalov, Kh. Éshmatov, and M. Yusupov, “Some methods of solving systems of integro-differential equations in viscoelastic problems,” Prikl. Mat. Mekh., 51, No. 5, 867–871 (1987).

    MATH  MathSciNet  Google Scholar 

  5. A. E. Bogdanovich, Nonlinear Dynamic Problems for Cylindrical Composite Shells [in Russian], Zinatne, Riga (1987).

    Google Scholar 

  6. A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  7. A. Ya. Grigorenko, “Numerical solution of the nonlinear free vibrations of a plate,” Int. Appl. Mech., 19, No. 10, 902–905 (1983).

    MATH  Google Scholar 

  8. A. Ya. Grigorenko, “Spline-collocation analysis of the natural vibrations of rectangular plates with varying thickness,” Prikl. Mekh., 26, No. 12, 116–118 (1990).

    MathSciNet  Google Scholar 

  9. A. A. Il’yushin and B. E. Pobedrya, Fundamentals of the Mathematical Theory of Thermoviscoelasticity [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  10. Ya. F. Kayuk, Nonlinear Problems in the Theory of Plates and Shells [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  11. Ya. F. Kayuk and V. K. Khizhnyak, “Nonlinear vibrations of a rectangular plate excited by a moving load,” Prikl. Mekh., 26, No. 6, 122–125 (1990).

    Google Scholar 

  12. M. A. Koltunov, Creep and Relaxation [in Russian], Vysshaya Shkola, Moscow (1976).

    Google Scholar 

  13. P. Z. Lugovoi and V. P. Mukoid, “Nonsteady deformation of a cylindrical shell with a hole under a transient load,” Int. Appl. Mech., 29, No. 9, 752–759 (1993).

    Article  Google Scholar 

  14. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill, New York (1959).

    MATH  Google Scholar 

  15. Kh. Éshmatov, Integral Method for Mathematical Simulation of Dynamic Problems for Viscoelastic Systems [in Russian], Author’s Abstract of D.Sci. Thesis, Kiev (1991).

  16. B. Kh. Éshmatov, “Mathematical simulation of nonlinear vibrations and dynamic stability of viscoelastic orthotropic plates with initial imperfections,” in: Abstracts 5th All-Russian Conf. of Young Scientists on Mathematical Simulation and Information Technologies [in Russian], Novosibirsk, November 1–3 (2004), pp. 34–35.

  17. B. Kh. Éshmatov, “Nonlinear vibrations of viscoelastic orthotropic cylindrical shells in which elastic waves propagate,” in: Proc. 17th Session Int. School on Models of Continuum Mechanics [in Russian], Kazan, July 4–10 (2004), pp. 186–191.

  18. B. Kh. Éshmatov, “Mathematical model of the nonlinear vibrations and dynamic stability of viscoelastic orthotropic shells with shear strains and rotary inertia,” Dokl. AN RUz, No. 1, 13–16 (2005).

  19. Z. Bao, S. Mukherjee, M. Roman, and N. Aubry, “Nonlinear vibrations of beams, strings, plates, and membranes without initial tension,” ASME, J. Appl. Mech., 71, 551–559 (2004).

    Article  MATH  Google Scholar 

  20. W. Han and M. Petyt, “Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method-I: The fundamental mode of isotropic plates,” Computers & Structures, 63, No. 2, 295–308 (1997).

    Article  MATH  Google Scholar 

  21. B. A. Khudayarov, “Numerical analysis of the nonlinear flutter of viscoelastic plates,” Int. Appl. Mech., 41, No. 5, 538–543 (2005).

    Article  MATH  Google Scholar 

  22. V. I. Kozlov and T. V. Karnaukhova, “Basic equations for viscoelastic laminated shells with distributed piezoelectric inclusions intended to control nonstationary vibrations,” Int. Appl. Mech., 38, No. 10, 1253–1260 (2002).

    Article  MATH  Google Scholar 

  23. V. D. Kubenko and P. S. Koval’chuk, “Influence of initial geometric imperfections on the vibrations and dynamic stability of elastic shells,” Int. Appl. Mech., 40, No. 8, 847–877 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Z. Lugovoi, V. F. Meish, and S. E. Shtantsel’, “Forced nonstationary vibrations of a sandwich cylindrical shell with cross-ribbed core,” Int. Appl. Mech., 41, No. 2, 161–167 (2005).

    Article  Google Scholar 

  25. V. F. Meish and A. S. Kairov, “Vibrations of reinforced cylindrical shells with initial deflections under nonstationary loads,” Int. Appl. Mech., 41, No. 1, 42–48 (2005).

    Article  MATH  Google Scholar 

  26. V. F. Meish, “Numerical solution of dynamic problems for reinforced ellipsoidal shells under nonstationary loads,” Int. Appl. Mech., 41, No. 4, 386–391 (2005).

    Article  Google Scholar 

  27. Y. X. Sun and S. Y. Zhang, “Chaotic dynamic analysis of viscoelastic plates,” Int. J. Mech. Sci., 43, 1195–1208 (2001).

    Article  MATH  Google Scholar 

  28. D. Touati and G. Cederbaum, “Dynamic stability of nonlinear viscoelastic plates,” Int. J. Solids Struct., 31, No. 17, 67–76 (1994).

    Google Scholar 

  29. X. Wang, “Numerical analysis of moving orthotropic thin plates,” Computers & Structures, 70, 467–486 (1999).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 42, No. 5, pp. 120–131, May 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Éshmatov, B.K. Nonlinear vibration analysis of viscoelastic plates based on a refined Timoshenko theory. Int Appl Mech 42, 596–605 (2006). https://doi.org/10.1007/s10778-006-0127-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0127-7

Keywords

Navigation