Skip to main content
Log in

Deformation of a Bingham viscoplastic fluid in a plane confuser

  • Published:
International Applied Mechanics Aims and scope

Abstract

A review is given to and comprehensive numerical-analytic study is carried out of the problem of steady Bingham viscoplastic flow in a plane confuser. The solution is constructed in the first approximation with the yield stress as a small parameter and the solution of the Jeffery-Hamel problem (steady radial motion of an incompressible viscous material in a plane confuser) as the zero-order approximation. The numerical analysis is based on the modified accelerated-convergence method proposed earlier by the authors. The bifurcations of the deformation pattern occurring when the parameters reach some critical values are discussed and commented on. The asymptotic boundaries of the rigid zones that appear at infinity upon perturbation of the yield stress are determined

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Akulenko and D. V. Georgievskii, “Smallness and asymptotic smallness of dimensional parameters in mechanics problems,” Dokl. RAN, 390, No. 5, 622–626 (2003).

    MathSciNet  Google Scholar 

  2. L. D. Akulenko, D. V. Georgievskii, D. M. Klimov, S. A. Kumakshev, and S. V. Nesterov, “Forcing a viscoplastic material with small yield stress through a plane confuser,” Izv. RAN, Mekh. Tverd. Tela, No. 4, 183–197 (2003).

  3. L. D. Akulenko, D. V. Georgievskii, and S. A. Kumakshev, “New asymmetric and multimode solutions for viscous flow in a plane confuser,” Dokl. RAN, 383, No. 1, 46–50 (2002).

    MathSciNet  Google Scholar 

  4. L. D. Akulenko, D. V. Georgievskii, and S. A. Kumakshev, “Viscous flow in a confuser with large opening angle,” Dokl. RAN, 386, No. 3, 333–337 (2002).

    MathSciNet  Google Scholar 

  5. L. D. Akulenko, D. V. Georgievskii, S. A. Kumakshev, and S. V. Nesterov, “Asymmetric and multimode converging flows in the Jeffery-Hamel problem,” Vest. MGU, Ser. Mat. Mekh., No. 2, 29–31 (2003).

  6. L. D. Akulenko, D. V. Georgievskii, S. A. Kumakshev, and S. V. Nesterov, “Asymmetric converging flows in the Jeffery-Hamel problem,” in: Trans. N. I. Lobachevskii Mathematics Center [in Russian], 7, DAS, Kazan (2000), pp. 340–341.

    Google Scholar 

  7. L. D. Akulenko, D. V. Georgievskii, S. A. Kumakshev, and S. V. Nesterov, “Numerical and analytic study of steady viscous flow in a plane confuser,” Dokl. RAN, 374, No. 1, 44–48 (2000).

    Google Scholar 

  8. L. D. Akulenko, S. A. Kumakshev, and S. V. Nesterov, “Efficient numerical-analytic solution of isoperimetric variational problems of mechanics by the accelerated-convergence method,” Prikl. Mat. Mekh., 66, No. 5, 723–741 (2002).

    MathSciNet  MATH  Google Scholar 

  9. L. D. Akulenko and S. V. Nesterov, “Efficient numerical-analytic solution of variational problems in mechanics,” Dokl. RAN, 374, No. 5, 624–627 (2000).

    MathSciNet  Google Scholar 

  10. G. I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics [in Russian], Gidrometeoizdat, Leningrad (1982).

    Google Scholar 

  11. G. K. Batchelor, An Introduction to Fluid Mechanics, Cambridge University Press (1967).

  12. M. P. Volarovich, “Studying the rheological properties of disperse systems,” Kolloid. Zh., 16, No. 3, 227–240 (1954).

    Google Scholar 

  13. M. P. Volarovich and N. V. Lazovskaya, “Studying peat flow in conical channels,” Dokl. AN SSSR, 76, No. 2, 211–213 (1951).

    Google Scholar 

  14. D. V. Georgievskii, “Problem of stability of quasilinear flows against perturbations of the hardening function,” Prikl. Mat. Mekh., 63, No. 5, 826–832 (1999).

    MathSciNet  Google Scholar 

  15. D. V. Georgievskii, “Some nonone-dimensional problems of viscoplasticity: rigid zones and stability (review),” Izv. RAN, Mekh. Tverd. Tela, No. 1, 61–78 (2001).

  16. D. V. Georgievskii, Stability of Deformation of Viscoplastic Bodies [in Russian], URSS, Moscow (1998).

    Google Scholar 

  17. D. V. Georgievskii and N. N. Okulova, “Karman viscoplastic flow,” Vestn.MGU, Ser. Mat. Mekh., No. 5, 45–49 (2002).

  18. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kiev (1986).

    Google Scholar 

  19. A. M. Gutkin, “Slow flow of a viscoplastic disperse medium in conical and plane diffusers with small opening angle,” Kolloid. Zh., 23, No. 3, 352 (1961).

    Google Scholar 

  20. M. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, CA (1975).

    MATH  Google Scholar 

  21. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin (1976).

    MATH  Google Scholar 

  22. A. A. Il’yushin, “Deformation of viscoplastic bodies,” Uchen. Zap. MGU, Mekh., 39, 3–81 (1940).

    Google Scholar 

  23. A. Yu. Ishlinskii, “Stability of viscoplastic flow of a circular plate,” Prikl. Mat. Mekh., 7, No. 6, 405–412 (1943).

    Google Scholar 

  24. A. Yu. Ishlinskii, “Stability of viscoplastic flow of a strip and a circular rod,” Prikl. Mat. Mekh., 7, No. 2, 109–130 (1943).

    Google Scholar 

  25. I. V. Keppen and S. Yu. Rodionov, “Tension/compression of a nonlinear viscoplastic strip,” in: Elasticity and Inelasticity [in Russian], Izd. MGU, Moscow (1987), pp. 97–105.

    Google Scholar 

  26. A. Kh. Kim and M. P. Volarovich, “Motion of a viscoplastic disperse system between two planes making an acute angle: A plane problem,” Kolloid. Zh., 22, No. 2, 186–194 (1960).

    Google Scholar 

  27. D. M. Klimov, S. V. Nesterov, L. D. Akulenko, D. V. Georgievskii, and S. A. Kumakshev, “ Viscoplastic flow in a confuser,” Special Issue, Izv. VUZov, Sev.-Kavkaz. Region (2001), pp. 89–92.

  28. D. M. Klimov, S. V. Nesterov, L. D. Akulenko, D. V. Georgievskii, and S. A. Kumakshev, “Flow of a viscoplastic medium with small yield stress in a plane confuser,” Dokl. RAN, 375, No. 1, 37–41 (2000).

    Google Scholar 

  29. N. E. Kochin, I. A. Kibel, and N. V. Roze, Theoretical Hydromechanics, Wiley Interscience, New York (1964).

    MATH  Google Scholar 

  30. N. V. Lazovskaya, “Studying the kinematics of flow of disperse systems (peat, grease, etc.) in cones, ” Kolloid. Zh., 11, No. 2, 77–83 (1949).

    Google Scholar 

  31. L. D. Landau and V. M. Lifshits, Hydrodynamics, Vol. 6 of the ten-volume series Theoretical Physics [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  32. B. I. Lapushina and A. Kh. Kim, “An approximate variational solution for steady isothermal flow of a viscoplastic medium in a plane parabolic diffuser,” in: Theoretical and Applied Mechanics [in Russian], Issue 1, Vyshéisha Shkola, Minsk (1975), pp. 17–20.

    Google Scholar 

  33. L. G. Loitsyanskii, Fluid Mechanics [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  34. S. A. Lomov, Introduction to the General Theory of Singular Perturbations [in Russian], Nauka, Moscow (1981).

    MATH  Google Scholar 

  35. A. A. Movchan, “Stability of processes with respect to two measures,” Prikl. Mat. Mekh., 24, No. 6, 988–1001 (1960).

    Google Scholar 

  36. P. P. Mosolov and V. P. Myasnikov, Variational Methods in the Theory of Rigid-Viscoplastic Flows [in Russian], Izd. MGU, Moscow (1971).

    Google Scholar 

  37. A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley-Interscience, New York (1981).

    MATH  Google Scholar 

  38. P. M. Ogibalov and A. Kh. Mirzadzhanzade, Nonstationary Motions of Viscoplastic Media [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  39. Ya. G. Panovko, Solid Mechanics: Modern Concepts, Errors, and Paradoxes [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  40. B. E. Pobedrya, Numerical Methods in the Theory of Elasticity and Plasticity [in Russian], Izd. MGU, Moscow (1995).

    Google Scholar 

  41. P. Perzyna, “Fundamental problems in viscoplasticity,” in: Advances in Applied Mechanics, Academic Press, New York (1966), pp. 244–368.

    Google Scholar 

  42. K. Rektorys, Variational Methods in Mathematics, Science and Engineering, Reidel, Boston (1977).

    Google Scholar 

  43. T. K. Sirazetdinov, Stability of Distributed-Parameter Systems [in Russian], Nauka, Novosibirsk (1987).

    Google Scholar 

  44. M. B. Sugak, “Motion of viscoplastic mass between two coaxial cones,” Inzh.-Fiz. Zh., 11, No. 6, 802–808 (1966).

    Google Scholar 

  45. N. V. Tyabin, “Viscoplastic flow of a disperse system in a diffuser and immersion of a wedge into a disperse system,” Dokl. AN SSSR, 84, No. 5, 943–946 (1952).

    Google Scholar 

  46. N. V. Tyabin and M. A. Pudovkin, “Flow of a viscoplastic disperse system in a conical diffuser, ” Dokl. AN SSSR, 92, No. 1, 53–56 (1953).

    MathSciNet  Google Scholar 

  47. A. D. Chernyshov, “Motion of a viscoplastic medium in a dihedral corner,” Int. Appl. Mech., 7, No. 1, 99–102 (1971).

    Google Scholar 

  48. A. D. Chernyshov, “On flows of a viscoplastic medium with nonlinear viscosity in a wedge,” Prikl. Mekh. Tekhn. Fiz., No. 4, 152–154 (1966).

  49. A. D. Chernyshov, “Steady motion of a viscoplastic medium between two coaxial cones and in a dihedron,” Prikl. Mekh. Tekhn. Fiz., No. 5, 93–99 (1970).

  50. V. V. Shelukhin, “Bingham model in stress-velocity variables,” Dokl. RAN, 377, No. 4, 455–458 (2001).

    MathSciNet  Google Scholar 

  51. W. H. H. Banks, P. G. Drazin, and M. B. Zaturska, “On perturbation of Jeffery-Hamel flow,” J. Fluid Mech., 186, 559–581 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. R. B. Bird, G. C. Dai, and B. J. Yarusso, “The rheology and flow of viscoplastic materials,” Rev. Chem. Eng., 1, No. 1, 1–70 (1982).

    Google Scholar 

  53. G. Camenschi, N. Cristescu, and N. Sandru, “Development in high-speed viscoplastic flow through conical converging dies,” Trans. ASME, J. Appl. Mech., 50, No. 3, 566–570 (1983).

    Article  MATH  Google Scholar 

  54. R. P. Chhabra and P. H. T. Uhlherr, “Static equilibrium and motion of spheres in viscoplastic liquids,” in: Rheology and Non Newton. Flows, Vol. 7 of Encyclopedia of Fluid Mechanics, Gulf. Publ., Houston (1988), pp. 611–633.

    Google Scholar 

  55. S. C. R. Dennis, W. H. H. Banks, P. G. Drazin, and M. B. Zaturska, “Flow along a diverging channel,” J. Fluid Mech., 336, 183–202 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. P. M. Eagles, “Jeffery-Hamel boundary-layer flows over curved beds,” J. Fluid Mech., 186, 583–597 (1988).

    Article  ADS  MATH  Google Scholar 

  57. P. M. Eagles, “The stability of a family of Jeffery-Hamel solutions for divergent channel flow, ” J. Fluid Mech., 24, 199–207 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  58. L. E. Fraenkel, “Laminar flow in symmetric channels with slightly curved walls. Part I. On the Jeffery-Hamel solutions for flow between plane walls,” Proc. Royal Soc. London, A267, 119 (1962).

    MathSciNet  ADS  Google Scholar 

  59. L. E. Fraenkel, “Laminar flow in symmetric channels with slightly curved walls. Part II. An asymptotic series for the stream function,” Proc. Royal Soc. London, A272, 406 (1963).

    MathSciNet  ADS  Google Scholar 

  60. A. N. Guz and A. P. Zhuk, “Motion of solid particles in a liquid under the action of an acoustic field: the mechanism of radiation pressure,” Int. Appl. Mech., 40, No. 3, 246–265 (2004).

    Article  Google Scholar 

  61. G. Hamel, “Spiralformige Bewegungen zahen Flussigkeiten,” Jahr.-Ber. Deutsch. Math. Ver., 25, 34–60 (1917).

    Google Scholar 

  62. I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Clarendon Press, Oxford Univ. Press, New York (1993).

    MATH  Google Scholar 

  63. D. D. Ivlev, “Perfect plasticity theory: State of the art and development trends,” Int. Appl. Mech., 39, No. 11, 1241–1270 (2003).

    Article  MathSciNet  Google Scholar 

  64. G. B. Jeffery, “The two-dimensional steady motion of a viscous fluid,” Phil. Mag., Ser. 6, 29, No. 172, 455–465 (1915).

    Article  Google Scholar 

  65. R. R. Kerswell, O. R. Tutty, and P. G. Drazin, “Steady nonlinear waves in diverging channel flow, ” J. Fluid Mech., 501, 231–250 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  66. I. A. Lukovsky, “Variational methods of solving dynamic problems for fluid-containing bodies,” Int. Appl. Mech., 40, No. 10, 1092–1128 (2004).

    Google Scholar 

  67. K. Millsaps and K. Pohlhausen, “Thermal distributions in Jeffery-Hamel flows between nonparallel plane walls,” J. Aeronaut. Sci., 20, No. 3, 187–196 (1953).

    MathSciNet  MATH  Google Scholar 

  68. L. Rivkind and V. A. Solonnikov, “Jeffery-Hamel asymptotics for steady state Navier-Stokes flow in domains with sector-like outlets to infinity,” J. Math. Fluid Dynam., 2, No. 4, 324–352 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  69. L. Rosenhead, “The steady two-dimensional radial flow of viscous fluid between two inclined plane walls,” Proc. Soc. London, Ser. A, 175, 436–467 (1940).

    ADS  MATH  Google Scholar 

  70. I. J. Sobey and P. G. Drazin, “Bifurcation of two-dimensional channel flows,” J. Fluid Mech., 171, 263–287 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. O. R. Tutty, “Nonlinear development of flow in channels with non-parallel walls,” J. Fluid Mech., 326, 265–284 (1996).

    Article  ADS  MATH  Google Scholar 

  72. E. Walicki and A. Walicka, “An approximate analysis for conical flow of viscoplastic fluids,” Zecz. Nauk. Bud. WSI Zielonej Gorze., No. 106, 197–217 (1994).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 42, No. 4, pp. 3–45, April 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akulenko, L.D., Georgievskii, D.V., Klimov, D.M. et al. Deformation of a Bingham viscoplastic fluid in a plane confuser. Int Appl Mech 42, 375–406 (2006). https://doi.org/10.1007/s10778-006-0096-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0096-x

Keywords

Navigation