Skip to main content
Log in

Influence of discrete ribs on the vibrations of rectangular plates

  • Published:
International Applied Mechanics Aims and scope

Abstract

A rectangular plate reinforced with longitudinal ribs is considered. The influence of the discrete ribs on the wavenumbers of harmonic waves propagating along the ribs is investigated. The effect of the stiffness parameters of the ribs on the natural frequencies and modes of a cross-ribbed plate is studied

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ya. Amiro and V. A. Zarutskii, “Statics, dynamics, and stability of ribbed shells,” in: Advances in Science and Technology: Solid Mechanics [in Russian], 21, VINITI, Moscow (1990), 132–191.

    Google Scholar 

  2. S. I. Kovinskaya and A. S. Nikiforov, “Fields of bending waves in infinite rib-reinforced plates subject to point excitation,” Akust. Zh., 19, No. 1, 47–52 (1973).

    Google Scholar 

  3. V. T. Lyapunov, “Isolation of bending waves in plates by an arbitrary obstacle,” Akust. Zh., 14, No. 4, 572–576 (1968).

    Google Scholar 

  4. V. P. Maslov, “A bending wave incident at an angle on an oblique obstacle in a plate,” Akust. Zh., 13, No. 3, 406–410 (1967).

    Google Scholar 

  5. I. V. Andrianov and G. A. Krizhevsky, “Free vibration analysis of rectangular plates with structural inhomogeneity,” J. Sound Vibr., 162, No. 2, 231–241 (1993).

    Article  ADS  MATH  Google Scholar 

  6. E. I. Bespalova and A. B. Kitaigorodskii, “Bending of composite plates under static and dynamic loading,” Int. Appl. Mech., 41, No. 1, 56–61 (2005).

    Article  Google Scholar 

  7. V. H. Cortinez and P. A. A. Laura, “Analysis of vibrating rectangular plates of discontinuously varying thickness by means of the Kantorovich extended method,” J. Sound Vibr., 137, No. 3, 457–461 (1990).

    Article  ADS  Google Scholar 

  8. L. Ercoli, P. A. A. Laura, R. Gil, R. Carnicer, and H. C. Sauzi, “Fundamental frequency of vibration of rectangular plates of discontinuously varying thickness with a free edge: Analytical and experimental results,” J. Sound Vibr., 141, No. 2, 221–229 (1990).

    Article  ADS  Google Scholar 

  9. S. Goswami and M. Mukhopadhyay, “Finite element free vibration analysis of laminated composite stiffened shell,” J. Compos. Mater., 29, No. 18, 2388–2422 (1995).

    Google Scholar 

  10. M. Heckl, “Wave propagation on beam plate systems,” J. Acoust. Soc. Amer., 33, No. 5, 640–651 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  11. T. S. Koko and M. D. Olson, “Vibration analysis of stiffened plates by super elements,” J. Sound Vibr., 158, No. 1, 149–167 (1992).

    Article  ADS  MATH  Google Scholar 

  12. L. S. Kuravsky and E. V. Arnautov, “On the approach to computing stiffened structure natural modes,” J. Sound Vibr., 150, No. 1, 161–166 (1991).

    Article  ADS  Google Scholar 

  13. R. S. Langlev, “Application of the dynamic stiffness method to the free and forced vibrations of aircraft panels,” J. Sound Vibr., 135, No. 2, 319–331 (1989).

    Article  ADS  Google Scholar 

  14. Y. K. Lin, “Stresses in continuous skin-stiffened panels under random loading,” J. Aero/Space Sci., 29, No. 1, 67–75, 86 (1962).

    MATH  Google Scholar 

  15. W. H. Liu and W. C. Chen, “Vibration analysis of skew cantilever plates with stiffeners,” J. Sound Vibr., 159, No. 1, 1–11 (1992).

    Article  ADS  MATH  Google Scholar 

  16. D. J. Mead and Y. Yaman, “The harmonic response of rectangular sandwich plates with multiple stiffening. A flexural wave analysis,” J. Sound Vibr., 145, No. 3, 409–428 (1991).

    Article  ADS  Google Scholar 

  17. D. J. Mead, D. C. Zhu, and N. S. Bardell, “Free vibration of an orthogonally stiffened flat plate,” J. Sound Vibr., 127, No. 1, 19–48 (1988).

    Article  ADS  Google Scholar 

  18. M. Mukhopadhyay, “Vibration and stability analysis of stiffened plates by semi-analytic finite difference method. Part 1. Consideration of bending displacements only,” J. Sound Vibr., 130, No. 1, 27–39 (1989).

    Article  ADS  Google Scholar 

  19. M. Mukhopadhyay, “Vibration and stability analysis of stiffened plates by semi-analytic finite difference method. Part II. Consideration of bending and axial displacements,” J. Sound Vibr., 130, No. 1, 41–53 (1989).

    Article  ADS  Google Scholar 

  20. J. W. Nicholson, “Free vibration of stiffened rectangular plates using Green’s functions and integral equations,” AIAA J., 24, No. 3, 485–491 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  21. P. G. Reinhall and R. N. Miles, “Effect of damping and stiffness on the random vibration of non-linear periodic plates,” J. Sound Vibr., 132, No. 1, 33–42 (1989).

    Article  ADS  Google Scholar 

  22. M. L. Rumerman, “Vibration and wave propagation in ribbed plates,” J. Acoust. Soc. Amer., 57, No. 2, 370–373 (1975).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. H.-J. Schlüter, “Die Ermittlung von Eigenfrequenzen and Eigenschwingungs formen der orthogonal verrippten Rechteckplatte bei beliebige Kombinationen eingespannter, frei-drehbar gelagerter und freier Ränder,” Schiffbauforschung, 15, No. 5–6, 152–162 (1976).

    Google Scholar 

  24. A. H. Sheikh and M. Mukhopadhyay, “Free vibration analysis of stiffened plates with arbitrary planform by the general spline finite strip method,” J. Sound Vibr., 162, No. 1, 147–164 (1993).

    Article  ADS  MATH  Google Scholar 

  25. A. H. Sheikh and M. Mukhopadhyay, “Large amplitude free flexural vibration of stiffened plates,” AIAA J., 34, No. 11, 2377–2383 (1996).

    MATH  Google Scholar 

  26. B. Singh and V. Saxena, “Transverse vibration of a rectangular plate bidirectional thickness variation,” J. Sound Vibr., 198, No. 1, 51–65 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Takahashi and T. Chishaki, “Free vibrations of plate structures with intermediate frames,” J. Sound Vibr., 61, No. 1, 79–99 (1978).

    Article  ADS  MATH  Google Scholar 

  28. E. E. Ungar, “Transmission of plate flexural waves through reinforcing beams; dynamic stress concentrations,” J. Acoust. Soc. Amer., 33, No. 5, 633–639 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  29. E. E. Ungar, “Free oscillations of edge-connected simply supported plate systems,” Trans. ASME, 83, No. 4, 434–440 (1961).

    Google Scholar 

  30. T. K. Varadan and K. A. Pandalai, “Large amplitude flexural vibration of eccentrically stiffened plates,” J. Sound Vibr., 67, No. 3, 329–340 (1979).

    Article  ADS  MATH  Google Scholar 

  31. T. Wah, “Vibration of stiffened plates,” Aeronaut. Quart., 15, No. 3, 285–298 (1964).

    Google Scholar 

  32. V. A. Zarutskii, “The vibrations of rectangular plates rib-reinforced in one direction,” Int. Appl. Mech., 36, No. 3, 367–371 (2000).

    MATH  MathSciNet  Google Scholar 

  33. V. A. Zarutskii, “Edge resonance in structurally orthotropic cylindrical shells,” Int. Appl. Mech., 41, No. 7, 786–792 (2005).

    Article  Google Scholar 

  34. V. A. Zarutskii and N. Ya. Prokopenko, “The natural vibrations of rectangular plates reinforced by orthogonal ribs,” Int. Appl. Mech., 36, No. 7, 948–953 (2000).

    Google Scholar 

  35. V. A. Zarutskii and N. Ya. Prokopenko, “Influence of discrete longitudinal ribs on harmonic waves in cylindrical shells,” Int. Appl. Mech., 39, No. 4, 457–463 (2003).

    Article  Google Scholar 

  36. V. A. Zarutskii and N. Ya. Prokopenko, “Dispersion curves for harmonic waves in longitudinally reinforced cylindrical shells,” Int. Appl. Mech., 39, No. 6, 721–725 (2003).

    Article  Google Scholar 

  37. V. A. Zarutskii and N. Ya. Prokopenko, “Dispersion equations for harmonic waves propagating along a cylindrical shell reinforced with a rib mesh (single-mode approximation),” Int. Appl. Mech., 40, No. 2, 190–198 (2004).

    Article  Google Scholar 

  38. V. A. Zarutskii and N. Ya. Prokopenko, “Natural vibrations of ribbed cylindrical shells with low shear stiffness,” Int. Appl. Mech., 41, No. 4, 397–404 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 65–78, February 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarutskii, V.A., Prokopenko, N.Y. Influence of discrete ribs on the vibrations of rectangular plates. Int Appl Mech 42, 181–191 (2006). https://doi.org/10.1007/s10778-006-0074-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-006-0074-3

Keywords

Navigation