Skip to main content
Log in

Terahertz Dielectric Characterization of Low-Loss Thermoplastics for 6G Applications

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

Common thermoplastics, namely, polycarbonate (PC), poly (methyl methacrylate) (PMMA), and acrylonitrile butadiene styrene (ABS) are low-cost materials with potential applications in emerging 6G communications systems, ranging from microelectronics packaging to metasurfaces for reflectors and filters. In addition, low-loss materials are also needed for more pedestrian applications, such as packaging for entire handheld devices, subassemblies, and high-frequency windows where low-cost is key and long lifetime might not be a requirement. In this work, we utilize terahertz time-domain spectroscopy from 500 GHz to 2 THz to characterize the dielectric properties and loss tangent for each thermoplastic above. The plastics investigated have refractive index (\(\sim\) 1.6–1.7) in the 6G band with low dispersion. The absorption, however, increases at high frequencies as is common in disordered materials, highlighting a key challenge for 6G. Nonetheless, in absolute terms, all the thermoplastics studied present low-loss performance compared with (higher–index) common glasses and ceramics within the entire frequency range, suggesting that they are promising candidates for selected applications for future 6G systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors will make data available on request.

References

  1. M. Ma, Y. Wang, M. Navarro-Cia, F. Liu, F. Zhang, Z. Liu, Y. Li, S. M. Hanham, and Z. Hao, The dielectric properties of some ceramic substrate materials at terahertz frequencies, Journal of the European Ceramic Society, Vol. 39, No. 14, pp. 4424–4428, 2019.

    Article  Google Scholar 

  2. F. Sanjuan and J. Tocho, Optical properties of silicon, sapphire, silica and glass in the terahertz range, in Latin America Optics and Photonics Conference, OSA Technical Digest (Optical Society of America, 2012), paper LT4C.1, 2012.

  3. S. Chen, K. Nguyen, and M. Afsar, Complex dielectric permittivity measurements of glass at millimeter waves and terahertz frequencies, in Proceedings of the 36th European Microwave Conference, Manchester, UK, pp. 384–387, 2006.

  4. R. Gharpurey and R. G. Meyer, Modeling and analysis of substrate coupling in integrated circuits, IEEE Journal of Solid-State Circuits, Vol. 31, No. 3, pp. 344–353, 1996.

    Article  Google Scholar 

  5. G. Pastorelli, T. Trafela, P. Taday, A. Portieri, L. D, K. Fukunaga, and M. Strlic, Characterisation of historic plastics using terahertz time-doamin spectroscopy and pulsed imaging, Analytical and Bioanalytical Chemistry, Vol. 403, pp. 1405–1414, 2012.

  6. F. D’Angelo, Z. Mics, M. Bonn, and D. Turchinovich, Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics, Optics Express, Vol. 22, No. 10, pp. 12475–12485, 2014.

    Article  Google Scholar 

  7. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, Terahertz dielectric properties of polymers, Journal of the Korean Physical Society, Vol. 49, No. 2, pp. 513–517, 2006.

    Google Scholar 

  8. S. Sahin, N. K. Nahar, and K. Sertel, Dielectric properties of low-loss polymers for mmW and THz applications, Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 40, No. 5, pp. 557–573, 2019.

    Article  Google Scholar 

  9. A. Podzorov and G. Gallot, Low-loss polymers for terahertz applications, Applied Optics, Vol. 47, No. 18, pp. 3254–3257, 2008.

    Article  Google Scholar 

  10. M. Naftaly, R. Miles, and P. Greenslade, Thz transmission in polymer materials–a data library, in 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, pp. 819–820, IEEE, 2007.

  11. M. Naftaly and R. E. Miles, Terahertz time-domain spectroscopy for material characterization, Proceedings of the IEEE, Vol. 95, No. 8, pp. 1658–1665, 2007.

    Article  Google Scholar 

  12. U. Strom, J. Hendrickson, R. Wagner, and P. Taylor, Disorder-induced far infrared absorption in amorphous materials, Solid State Communications, Vol. 15, No. 11–12, pp. 1871–1875, 1974.

    Article  Google Scholar 

  13. U. Strom and P. Taylor, Temperature and frequency dependences of the far-infrared and microwave optical absorption in amorphous materials, Physical Review B, Vol. 16, No. 12, p. 5512, 1977.

    Article  Google Scholar 

  14. D. Chen and H. Chen, A novel low-loss terahertz waveguide: Polymer tube, Optics Express, Vol. 18, pp. 3762–3767, 2010.

    Article  Google Scholar 

  15. T. Chang, X. Zhang, X. Zhang, and H.L. Cui, Accurate determination of dielectric permittivity of polymers from 75 GHz to 1.6 THz using both s-parameters and transmission spectroscopy, Applied Optics, Vol. 56, pp. 3287–3292, 2017.

    Article  Google Scholar 

  16. J. Tong, Y. Sato, S. Takahashi, N. Imajyo, A. F. Peterson, V. Sundaram, and R. Tummala, High-frequency characterization of through package vias formed by focused electrical-discharge in thin glass interposers, in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), pp. 2271–2276, IEEE, 2014.

  17. W. T. Khan, J. Tong, S. Sitaraman, V. Sundaram, R. Tummala, and J. Papapolymerou, Characterization of electrical properties of glass and transmission lines on thin glass up to 50 GHz, in 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), pp. 2138–2143, IEEE, 2015.

  18. M. ur Rehman, S. Ravichandran, A. O. Watanabe, S. Erdogan, and M. Swaminathan, Characterization of ABF/Glass/ABF substrates for mmWave applications, IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 11, No. 3, pp. 384–394, 2021.

    Article  Google Scholar 

  19. M. Naftaly, N. Ridler, J. Molloy, N. Shoaib, and D. Stokes, A comparison method for THz measurements using VNA and TDS, in 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), pp. 1–2, IEEE, 2015.

  20. N. Palka, M. Szala, and E. Czerwinska, Characterization of prospective explosive materials using terahertz time-domain spectroscopy, Applied Optics, Vol. 55, No. 17, pp. 4575–4583, 2016.

    Article  Google Scholar 

  21. M. Zhai, A. Locquet, and D. Citrin, Pulsed THz imaging for thickness characterization of plastic sheets, NDT & E International, Vol. 116, p. 102338, 2020.

    Article  Google Scholar 

  22. M. Zhai, E. T. A. Mohamed, A. Locquet, G. Schneider, R. Kalmar, M. Fendler, N. Declercq, and D. Citrin, Diagnosis of injection-molded weld lines in abs thermoplastic by polarized terahertz reflective imaging, NDT & E International, p. 102497, 2021.

  23. E. Fedulova, M. M. Nazarov, A. Angeluts, M. Kitai, V. Sokolov, and A. Shkurinov, Studying of dielectric properties of polymers in the terahertz frequency range, in Saratov Fall Meeting 2011: Optical Technologies in Biophysics and Medicine XIII, Vol. 8337, p. 83370I, International Society for Optics and Photonics, 2012.

  24. X. Xin, H. Altan, A. Saint, D. Matten, and R. Alfano, Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature, Journal of Applied Physics, Vol. 100, No. 9, p. 094905, 2006.

    Article  Google Scholar 

  25. M. Naftaly and R. Miles, Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties, Journal of Applied Physics, Vol. 102, No. 4, p. 043517, 2007.

    Article  Google Scholar 

  26. V. Bershtein and V. Ryzhov, Far infrared spectroscopy of polymers, in Polymer Analysis and Characterization, pp. 43–121, Springer, 1994.

  27. V. Ryzhov, Low-energy libration excitations in glassy PMMA, Solid State Physics, Vol. 44, pp. 2229–2233, 2002.

    Article  Google Scholar 

  28. A. K. Jonscher, The ‘universal’ dielectric response, Nature, Vol. 267, No. 5613, pp. 673–679, 1977.

    Article  Google Scholar 

  29. A. K. Jonscher, The universal dielectric response and its physical significance, IEEE Transactions on Electrical Insulation, Vol. 27, No. 3, pp. 407–423, 1992.

    Article  Google Scholar 

  30. S. Taraskin, S. Simdyankin, S. Elliott, J. Neilson, and T. Lo, Universal features of terahertz absorption in disordered materials, Physical Review Letters, Vol. 97, No. 5, p. 055504, 2006.

    Article  Google Scholar 

Download references

Acknowledgements

MZ, AL, and DSC gratefully acknowledge the support of Conseil Régional Grand Est, CPER SusChemProc, and Institut Carnot ARTS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Citrin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, M., Locquet, A. & Citrin, D.S. Terahertz Dielectric Characterization of Low-Loss Thermoplastics for 6G Applications. Int J Wireless Inf Networks 29, 269–274 (2022). https://doi.org/10.1007/s10776-022-00554-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-022-00554-x

Keywords

Navigation