Skip to main content

Human Body Communication In-Vivo Measurement Using Different Test Equipment


Human body communication is non-radio frequency technique of wireless body area network, wherein the human body is used as a communication medium in two coupling methods namely: capacitive and galvanic coupling. HBC is relatively new method and in full development, given the large number of scientific publishing works depending on different setup and equipment. Even that it remains controversial with no consensus in terms of propagation characteristics and behavior mechanism. This paper deals with the common used test equipment and configuration attempting to provide a complementary information about HBC channel characterization issue. For that, in vivo measurements were carried out using several assembling of equipment in different scenarios, considering the conventional inspected parameters (channel length, transverse distance and balun insertion scenarios). The measurements were conducted in both frequency and time domain using primarily spectrum/vector network analyzer and digital oscilloscope respectively. Thus, in addition to transmission losses between transceivers across the channel (calculated path loss factor), phase angle information are considered over the operating frequency band to assert the non-dispersive HBC channel nature. Further harmonic distortion effect is shown, then high transmission power for the signal of interest is attributed to HBC methods according to the calculated total harmonic distortion THD metric, even harmonics resulting from the channel non-linearity characteristics or transceivers signal/apparatus imperfections. The experimental setups highlights the important to consider the precise criteria for measurement purpose, thus leading using the most appropriate test apparatus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    I. Ahmed, H. Karvonen, T. Kumpuniemi, M. Katz, Wireless communications for the hospital of the future: Requirements, challenges and solutions, International Journal of Wireless Information Networks, Vol. 27, No. 1, pp. 4–17, 2019.

    Article  Google Scholar 

  2. 2.

    A. Bohloulzadeh, M. Rajaei, A survey on congestion control protocols in wireless sensor networks, International Journal of Wireless Information Networks, Vol. 27, No. 3, pp. 365–384, 2020.

    Article  Google Scholar 

  3. 3.

    K. Sayrafian-Pour, W.-B. Yang, J. Hagedorn, J. Terrill, K. Y. Yazdandoost, K. Hamaguchi, Channel models for medical implant communication, International Journal of Wireless Information Networks, Vol. 17, No. (3–4, pp. 105–112, 2010.

    Article  Google Scholar 

  4. 4.

    D. K. Rout, S. Das, Multiple narrowband interference cancellation in high data rate UWB body area networks using hybrid hermite pulses, International Journal of Wireless Information Networks, Vol. 22, no. 3, pp. 252–261, 2015.

    Article  Google Scholar 

  5. 5.

    J. Wang, K. Han, A. Alexandridis, Z. Zilic, Y. Pang, W. Wu, S. Din, G. Jeon, A novel security scheme for body area networks compatible with smart vehicles, Computer Networks, Vol. 143, pp. 74–81, 2018.

    Article  Google Scholar 

  6. 6.

    H. Baldus, S. Corroy, A. Fazzi, K. Klabunde, T. Schenk, Human-centric connectivity enabled by body-coupled communications, IEEE Communications Magazine, Vol. 47, 2009.

  7. 7.

    M. Kompara, M. Hölbl, Survey on security in intrabody area network communication, Ad Hoc Networks, Vol. 70, 2017.

  8. 8.

    S. Jingjing, W. Jianqing, Human Body Communication Based Wearable Technology for Vital Signal Sensing, Ch. 11, pp. 215–233, 2018.

  9. 9.

    J. Petäjäjärvi, K. Mikhaylov, R. Vuohtoniemi, H. Karvonen, J. Iinatti, On the human body communications: wake-up receiver design and channel characterization, EURASIP Journal on Wireless Communications and Networking.

  10. 10.

    D. Muramatsu, Y. Yokoyama, K. Sasaki, Clarification of transmission mechanism in human body communication between head-mounted wearable devices with detailed model, in: 2014 International Conference on Electronics Packaging (ICEP), IEEE, 2014.

  11. 11.

    M. S. Wegmueller, M. Oberle, N. Felber, N. Kuster, W. Fichtner, Signal transmission by galvanic coupling through the human body, IEEE Transactions on Instrumentation and Measurement, Vol. 59, pp. 963–969, 2010.

    Article  Google Scholar 

  12. 12.

    T. Zimmerman, Personal area networks (pan): Nearfield intra-body communication, Master’s thesis, MIT, 1996.

  13. 13.

    F. Maamir, S. Tedjini, R. Touhami, M. Guiatni, Complementary in-vivo measurements for human body communication, in: 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B), IEEE, 2017.

  14. 14.

    J. Bae, H.-J. Yoo, The effects of electrode configuration on body channel communication based on analysis of vertical and horizontal electric dipoles, IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 4, pp. 1409–1420, 2015.

    Article  Google Scholar 

  15. 15.

    M. Li, Y. Song, W. Li, G. Wang, T. Bu, Y. Zhao, Q. Hao, The modeling and simulation of the galvanic coupling intra-body communication via handshake channel, Sensors, Vol. 17, No. 4, p. 863, 2017.

    Article  Google Scholar 

  16. 16.

    M. A. Callejon, J. Reina-Tosina, D. Naranjo Hernandez, L. M. Roa, Measurement issues in galvanic intrabody communication: Influence of experimental setup, IEEE Transactions on Biomedical Engineering, Vol. 62, No. 11, pp. 2724–2732, 2015.

    Article  Google Scholar 

  17. 17.

    M. A. Callejon, D. Naranjo-Hernandez, J. ReinaTosina, L. M. Roa, A comprehensive study into intrabody communication measurements, IEEE Transactions on Instrumentation and Measurement, Vol. 62, No. 9, pp. 2446–2455, 2013.

    Article  Google Scholar 

  18. 18.

    Y. Song, Q. Hao, K. Zhang, M. Wang, Y. Chu, B. Kang, The simulation method of the galvanic coupling intrabody communication with different signal transmission paths, IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 4, pp. 1257–1266, 2011.

    Article  Google Scholar 

  19. 19.

    X. Chen, P. Mak, S. Pun, Y. Gao, C. Lam, M. Vai, M. Du, Study of channel characteristics for galvanictype intra-body communication based on a transfer function from a quasistatic field model, Sensors, Vol. 12, pp. 16433–16450, 2012.

    Article  Google Scholar 

  20. 20.

    J. Sakai, L. Wu, H. Sun, Y. Guo, Balun’s effect on the measurement of transmission characteristics for intrabody communication channel, in: 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), pp. 1–3, 2013.

  21. 21.

    B. Kibret, M. Seyedi, D. T. H. Lai, M. Faulkner, The effect of tissues in galvanic coupling intrabody communication, in: 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 318–323, 2013.

  22. 22.

    L. Xia, S. Redfield, P. Chiang, Experimental characterization of a uwb channel for body area networks, EURASIP Journal on Wireless Communications and Networking, 2011.

  23. 23.

    J. Hwang, T. Kang, J. Kwon, S. Park, Effect of electromagnetic interference on human body communication, IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No, 1, pp. 48–57, 2017.

    Article  Google Scholar 

  24. 24.

    K. Oh, T. W. Kang, S. E. Kim, H.-I. Park, I. G. Lim, S. Kang, Low-noise inducing rx for human body communication, IET Journals and Magazines, Vol. 52, No. 21, pp. 1740–1742, 2016.

    Article  Google Scholar 

  25. 25.

    J. Bae, H. Cho, K. Song, H. Lee, H. Yoo, The signal transmission mechanism on the surface of human body for body channel communication, IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 3, pp. 582–593, (2012.

    Article  Google Scholar 

  26. 26.

    R. D’Errico, L. Ouvry, A statistical model for onbody dynamic channels, International Journal of Wireless Information Networks, Vol. 17, No. 3–4, pp. 92–104, 2010.

  27. 27.

    M. Seyedi, B. Kibret, D. Lai, M. Faulkner, An empirical comparison of limb joint effects on capacitive and galvanic coupled intra-body communications, pp. 213–218, 2013.

  28. 28.

    M. Seyedi, D. T. H. Lai, M. Faulkner, Limb joint effects on signal transmission in capacitive coupled intra-body communication systems, in: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6699–6702, 2012.

  29. 29.

    T. Leng, Z. Nie, W. Wang, F. Guan, L. Wang, A human body communication transceiver based on on-off keying modulation, in: International Symposium on Bioelectronics and Bioinformations 2011, pp. 61–64, 2011.

    Article  Google Scholar 

  30. 30.

    A. Sasaki, M. Shinagawa, K. Ochiai, Sensitive and stable electro-optic sensor for intrabody communication, in: The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, LEOS 2004, Vol. 1, pp. 122-123, 2004.

  31. 31.

    Y. Song, Q. Hao, K. Zhang, J. Wang, X. Jin, H. Sun, Signal transmission in a human body medium-based body sensor network using a mach-zehnder electro-optical sensor, Sensors (Basel, Switzerland), Vol. 12, pp. 16557–70, 2012.

    Article  Google Scholar 

  32. 32.

    F. Maamir, M. Guiatni, S. Tedjini, S. Gaoua, R. Touhami, F. Abed, Optocoupler effect on in-vivo measurements characterization for human body communication, pp. 345–348, 2018.

  33. 33.

    A. Ahlbom, U. Bergqvist, J. Bernhardt, J. Cesarini, L. Court, M. Grandolfo, M. Hietanen, A. McKinlay, M. Repacholi, D. Sliney, J. Stolwijk, M. Swicord, L. Szabo, M. Taki, T. Tenforde, H. Jammet, R. Matthes, Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 ghz).international commission on nonionizing radiation protection, Health Physics, Vol. 4, pp. 494–521, 1998.

    Google Scholar 

  34. 34.

    M. Stuchly, Wireless communications and the safety of the user, International Journal of Wireless Information Networks, Vol. 1, No. 4, pp. 223–228, 1994.

    Article  Google Scholar 

  35. 35.

    D. Jorgesen, C. Marki, A Tutorial on Baluns, Balun Transformers, Magic-Ts, and 180 Hybrids, Marki Microwave Inc., Morgan Hill, CA, 2014.

    Google Scholar 

  36. 36.

    M. A. Callejon, L. M. Roa, J. Reina-Tosina, D. Naranjo-Hernandez, Study of attenuation and dispersion through the skin in intrabody communications systems, IEEE Transactions on Information Technology in Biomedicine, Vol. 16, No. 1, pp. 159–165, 2012.

    Article  Google Scholar 

  37. 37.

    M. D. Pereira, G. A. Alvarez-Botero, F. R. de Sousa, Characterization and modeling of the capacitive HBC channel, IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 10, pp. 2626–2635, 2015.

    Article  Google Scholar 

  38. 38.

    L.-S. Wu, J. Sakai, H.-C. Sun, Y.-X. Guo, Matching network to improve the transmission level of capacitive intra-body communication (IBC) channels, in: 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), IEEE, 2013.

Download references

Author information



Corresponding author

Correspondence to Fouad Maamir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maamir, F., Touhami, R., Tedjini, S. et al. Human Body Communication In-Vivo Measurement Using Different Test Equipment. Int J Wireless Inf Networks (2021).

Download citation


  • Human body communication
  • Galvanic coupling
  • Capacitive coupling
  • In vivo measurement
  • Test equipment