Skip to main content
Log in

A ReRAM Physically Unclonable Function (ReRAM PUF)-Based Approach to Enhance Authentication Security in Software Defined Wireless Networks

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

The exponentially increasing number of ubiquitous wireless devices connected to the Internet in Internet of Things (IoT) networks highlights the need for a new paradigm of data flow management in such large-scale networks under software defined wireless networking (SDWN). The limited power and computation capability available at IoT devices as well as the centralized management and decision making approach in SDWN introduce a whole new set of security threats to the networks. In particular, the authentication mechanism between the controllers and the forwarding devices in SDWNs is a key challenge from both secrecy and integrity aspects. Conventional authentication protocols based on public key infrastructure (PKI) are no longer sufficient for these networks considering the large-scale and heterogeneity nature of the networks as well as their deployment cost, and security vulnerabilities due to key distribution and storage. We propose a novel security protocol based on physical unclonable functions (PUFs) known as hardware security primitives to enhance the authentication security in SDWNs. In this approach, digital PUFs are developed using the inherent randomness of the nanomaterials of Resistive Random Access Memory (ReRAM) that are embedded in most IoT devices to enable a secure authentication and access control in these networks. These PUFs are developed based on a novel approach of multi states, in which the natural drifts due to the physical variations in the environment are predicted to reduce the potential errors in challenge-response pairs of PUFs being tested in different situations. We also proposed a PUF-based PKI protocol to secure the controller in SDWNs. The performance of the developed ReRAM-based PUFs are evaluated in the experimental results. Moreover, the effectiveness of the proposed multi-state machine learning technique to predict the drifts of the PUFs’ responses in different temperature and biased conditions is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Afghah and B. Cambou. Multi-state unclonable functions and related systems, November 2016.

  2. F. Afghah, M. Costa, A. Razi, A. Abedi, and A. Ephremides. A reputation-based stackelberg game approach for spectrum sharing with cognitive cooperation. In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pages 3287–3292, 2013.

  3. F. Afghah, A. Razi and A. Abedi, Stochastic game theoretical model for packet forwarding in relay networks, Springer Telecommunication Systems Journal, Special Issue on Mobile Computing and Networking Technologies, Vol. 54, No. 2, pp. 1877–1893, 2013.

    Google Scholar 

  4. I. Ahmad, S. Namal, M. Ylianttila and A. Gurtov, Security in software defined networks: A survey, IEEE Communications Surveys & Tutorials, Vol. 17, No. 4, pp. 2317–2346, 2015.

    Article  Google Scholar 

  5. S. T. Ali, V. Sivaraman, A. Radford and S. Jha, A survey of securing networks using software defined networking, IEEE Transactions on Reliability, Vol. 64, No. 3, pp. 1086–1097, 2015.

    Article  Google Scholar 

  6. F. Ayotunde Alaba, M. Othman, I. A. T. Hashem and F. Alotaibi, Internet of things security: A survey, Journal of Network and Computer Applications, Vol. 88, No. Supplement C, pp. 10–28, 2017.

    Article  Google Scholar 

  7. C. J. Bernardos, A. de la Oliva, P. Serrano, A. Banchs, L. M. Contreras, H. Jin and J. C. Zuniga, An architecture for software defined wireless networking, IEEE Wireless Communications, Vol. 21, No. 3, pp. 52–61, 2014.

    Article  Google Scholar 

  8. B. Cambou and F. Afghah. Physically unclonable functions with multi-states and machine learning. In 14th International Workshop on Cryptographic Architectures Embedded in Logic Devices (CryptArchi), 2016.

  9. B. Cambou and M. Orlowski. Puf designed with reram and ternary states. In Proceedings of the 11th Annual Cyber and Information Security Research Conference, 2016.

  10. B. Cambou, F. Afghah, D. Sonderegger, J. Taggart, H. Barnaby, and M. Kozicki. Ag conductive bridge rams for physical unclonable functions. In 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pages 151–151, 2017.

  11. B. Cambou. Physically unclonable function generating systems and related methods, 08 2015.

  12. M. Chen, Y. Qian, S. Mao, W. Tang, and X. Yang. Software-defined mobile networks security. Mobile Networks and Applications, Vol. 21, No. 5, pp. 729–743, 2016.

    Article  Google Scholar 

  13. A. Chen. Comprehensive assessment of rram-based puf for hardware security applications. In 2015 IEEE International Electron Devices Meeting (IEDM), pages 10.7.1–10.7.4, 2015.

  14. T. A. Christensen and J. E. Sheets II. Implementing puf utilizing edram memory cell capacitance variation, 10 2012.

  15. A. Y. Ding, J. Crowcroft, S. Tarkoma and H. Flinck, Software defined networking for security enhancement in wireless mobile networks, Computer Networks, Vol. 66, pp. 94–101, 2014.

    Article  Google Scholar 

  16. O. Flauzac, C. Gonz, A. Hachani, and F. Nolot. SDN based architecture for IoT and improvement of the security. In 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pages 688–693, 2015.

  17. Y. Gao, D. C. Ranasinghe, S. F. Al-Sarawi, O. Kavehei and D. Abbott, Emerging physical unclonable functions with nanotechnology, IEEE Access, Vol. 4, pp. 61–80, 2016.

    Article  Google Scholar 

  18. G. Ghosh and M. Orlowski, Write and erase threshold voltage interdependence in resistive switching memory cells, IEEE Transactions on Electron Devices, Vol. 62, No. 9, pp. 2850–2856, 2015.

    Article  Google Scholar 

  19. N. Gilbert, Y. Zhang, J. Dinh, B. Calhoun, and S. Hollmer. A 0.6v 8 pj/write non-volatile cbram macro embedded in a body sensor node for ultra low energy applications. In 2013 Symposium on VLSI Circuits, pages C204–C205, 2013.

  20. Granter Inc. Gartner says 6.4 billion connected “things” will be in use in 2016, up 30 percent from 2015. Available: http://www.gartner.com/newsroom/id/3165317, 2015.

  21. J. Guajardo, S. S. Kumar, G.-J. Schrijen and P. Tuyls, Fpga intrinsic pufs and their use for ip protection, Cryptographic Hardware and Embedded Systems - CHES, Vol. 2007, pp. 63–80, 2007.

    Google Scholar 

  22. I. T. Haque and N. Abu-Ghazaleh, Wireless software defined networking: A survey and taxonomy, IEEE Communications Surveys & Tutorials, Vol. PP, No. 99, p. 1, 2016.

    Google Scholar 

  23. D. He, S. Chan and M. Guizani, Securing software defined wireless networks, IEEE Communications Magazine, Vol. 54, No. 1, pp. 20–25, 2016.

    Article  Google Scholar 

  24. C. Helfmeier, C. Boit, , and S. S. J. Tajik. Physical vulnerabilities of physically unclonable functions. In Proceedings of the conference on Design, Automation & Test (DARE’14), 2014.

  25. C. Herder, M. Yu, F. Koushanfar, and S. Devadas. Physical unclonable functions and applications: A tutorial. Proceedings of the IEEE, 102(8), 2014.

  26. D. E. Holcomb, W. P. Burleson, and K. Fu. Power-up sram state as an identifying fingerprint and source of true random numbers. IEEE Transactions on Computing, Vol. 58, No. 9, pp. 1198–1210, 2009. https://doi.org/10.1109/TC.2008.212.

    MathSciNet  MATH  Google Scholar 

  27. R. Holz, T. Riedmaier, N. Kammenhuber and G. Carle, X.509 Forensics Detecting and Localising the SSL/TLS Men-in-the-Middle, SpringerBerlin, 2012. pp. 217–234.

    Google Scholar 

  28. N. A. Jagadeesan and B. Krishnamachari, Software-defined networking paradigms in wireless networks: A survey, ACM Computer Survey, Vol. 47, No. 2, pp. 27:1–27:11, 2014.

    Article  Google Scholar 

  29. Y. Jin, Introduction to hardware security, Electronics, Vol. 4, pp. 763–784, 2015.

    Article  Google Scholar 

  30. K. Kalkan and S. Zeadally. Securing internet of things (iot) with software defined networking. IEEE Communications Magazine, in press, 2017.

  31. D. Klingel, R. Khondoker, R. Marx, and K. Bayarou. Security analysis of software defined networking architectures: PCE, 4D and SANE. In Proceedings of the AINTEC 2014 on Asian Internet Engineering Conference, AINTEC ’14, pages 15:15–15:22, New York, NY, USA, 2014. ACM.

  32. R. Klti, V. Kotronis, and P. Smith. Openflow: A security analysis. In 2013 21st IEEE International Conference on Network Protocols (ICNP), pages 1–6, 2013.

  33. M. N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar and M. Mitkova, Programmable metallization cell memory based on ag-ge-s and cu-ge-s solid electrolytes. In ProcNon-Volatile Memory Technology Symposium, 2005.

  34. M. N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park, and r M. Mitkova. Nonvolatile memory based on solid electrolytes. In Proc. IEEE Non-Volatile Memory Technol. Symp., 2004.

  35. M. N. Kozicki and M. Mitkova, Mass transport in chalcogenide electrolyte films ? Materials and applications, Journal of Non-Crystalline Solids, Vol. 352, pp. 567–577, 2006.

    Article  Google Scholar 

  36. M. N. Kozicki, M. Park and M. Mitkova, Nanoscale memory elements based on solid-state electrolytes, IEEE Transactions on Nanotechnology, Vol. 4, No. 3, pp. 331–338, 2005.

    Article  Google Scholar 

  37. D. Kreutz, F. Ramos, and P. Verissimo. Towards secure and dependable software-defined networks. In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, pages 55–60. ACM, 2013.

  38. D. Kreutz, F. M. V. Ramos, P. E. Ver, C. E. Rothenberg, S. Azodolmolky and S. Uhlig, Software-defined networking: A comprehensive survey, Proceedings of the IEEE, Vol. 103, No. 1, pp. 14–76, 2015.

    Article  Google Scholar 

  39. C. Krutzik. Solid state drive physical unclonable function erase verification device and method, 01 2015.

  40. T. Liu, T. Verma, Y. Kang and M. Orlowski, Coexistance of bipolar and unipolar switching in Cu/TaOx/Pt resistive devices for Cu and oxygen vacancy nanofilaments, ECS Transactions, Vol. 45, No. 3, pp. 279–285, 2012.

    Article  Google Scholar 

  41. T. Liu, T. Verma, Y. Kang and M. Orlowski, Volatile resistive switching in Cu/TaOx/-Cu/Pt devices, Applied Physics Letter, Vol. 101, p. 073510, 2012.

    Article  Google Scholar 

  42. T. Liu, Y. Kang, S. El-Helw, T. Potnis and M. Orlowski, Physics of the voltage constant in multilevel switching of conductive bridge memory, JJAP, Vol. 52, p. 084202, 2013.

    Google Scholar 

  43. M. Liyanage, I. Ahmed, M. Ylianttila, J. L. Santos, R. Kantola, O. L. Perez, Uriarte O. Edgardo M. de Itzazelaia, M., A. Valtierra, and C. Jimenez. Security for future software defined mobile networks. In 2015 9th International Conference on Next Generation Mobile Applications, Services and Technologies, pages 256–264. IEEE, 9 2015.

  44. R. Maes and I. Verbauwhede, Physically unclonable functions: A study on the state of the art and future research directions. In Towards Hardware-Intrinsic Security Part of the series Information Security and Cryptography, Springer, Berlin, 2010.

  45. R. Maes, P. Tuyls, and I. Verbauwhede. A soft decision helper data algorithm for sram pufs. In 2009 IEEE International Symposium on Information Theory, 2009.

  46. R. Maes, Physically Unclonable Functions: Constructions Properties and Applications, SpringerBerlin, 2015.

    MATH  Google Scholar 

  47. A. Maiti, I. Kim and P. Schaumont, A robust physical unclonable function with enhanced challenge-response set, IEEE Transactions on Information Forensics and Security, Vol. 7, No. 1, pp. 333–345, 2012.

    Article  Google Scholar 

  48. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker and J. Turner, OpenFlow: Enabling innovation in campus networks, ACM SIGCOMM Computer Communication Review, Vol. 38, No. 2, pp. 69–74, 2008.

    Article  Google Scholar 

  49. D. M. Mendez, I. Papapanagiotou, and B.Yang. Internet of things: Survey on security and privacy. CoRR, abs/1707.01879, 2017.

  50. M. Mendonca, K. Obraczka, and T. Turletti. The case for software-defined networking in heterogeneous networked environments. In Proceedings of the 2012 ACM conference on CoNEXT student workshop, pages 59–60. ACM, 2012.

  51. P. R. Mickel, A. J. Lohn, B. J. Choi, J. J. Yang, M.-X. Zhang, M. J. Marinella, C. D. James and R. S. Williams, A physical model of switching dynamics in tantalum oxide memristive devices, Applied Physics Letters, Vol. 102, p. 223502, 2013.

    Article  Google Scholar 

  52. B. C. Neuman and T. Ts’o, Kerberos: An authentication service for computer networks, IEEE Communications Magazine, Vol. 32, No. 9, pp. 33–38, 1994.

    Article  Google Scholar 

  53. R. Pappu, B. Recht, J. Taylor and N. Gershenfield, Physical one-way functions, Science, Vol. 297, pp. 2026–2030, 2002.

    Article  Google Scholar 

  54. M. Potkonjak and V. Goudar, Public physical unclonable functions, Proceedings of the IEEE, Vol. 102, No. 8, pp. 1142–1156, 2014.

    Article  Google Scholar 

  55. A. Razi, F. Afghah and A. Abedi, Power optimized DSTBC assisted DMF relaying in wireless sensor networks with redundant super nodes, IEEE Transactions on Wireless Communications, Vol. 12, No. 2, pp. 636–645, 2013.

    Article  Google Scholar 

  56. L. Schehlmann, S. Abt, and H. Baier. Blessing or curse? Revisiting security aspects of software-defined networking. In 10th International Conference on Network and Service Management (CNSM) and Workshop, pages 382–387, 2014.

  57. S. Scott-Hayward, S. Natarajan and S. Sezer, A survey of security in software defined networks, IEEE Communications Surveys & Tutorials, Vol. 18, No. 1, pp. 623–654, 2016.

    Article  Google Scholar 

  58. G. E. Suh and S. Devadas. Physical unclonable functions for device authentication and secret key generation. In Design Automation Conference (DAC), 2007.

  59. A. I. Swapna, M. R. Huda, and M. K. Aion. Comparative security analysis of software defined wireless networking (sdwn)-bgp and netconf protocols. In 2016 19th International Conference on Computer and Information Technology (ICCIT), pages 282–287, 2016.

  60. P. Tuyls, G. Schrijen, B. Skoric, J. van Geloven, N. Verhaegh, and R. Wolters. Read-proof hardware from protective coatings. In 8th Int. Workshop on Cryptographic Hardware and Embedded Systems(CHES ), 2006.

  61. J. D. Tygar, V. Wen, A. Perrig, R. Szewczyk and D. Culler, Spins: Security protocols for sensor networks, Wireless Network, Vol. 8, p. 521534, 2002.

    MATH  Google Scholar 

  62. L. Valov, R. Waser, J. R. Jameson and M. N. Kozicki, Electrochemical metallization memories–fundamentals, applications, prospects, Nanotechnology, Vol. 22, p. 254003, 2011.

    Article  Google Scholar 

  63. E. I. Vatajelu, G. D. Natale, M. Barbareschi, L. Torres, M. Indaco and P. Prinetto, STT-mram-based PUF architecture exploiting magnetic tunnel junction fabrication-induced variability, ACM Journal on Emerging Technologies in Computing Systems, Vol. 13, No. 1, p. 5, 2016.

    Article  Google Scholar 

  64. Y. Yoshimoto, Y. Katoh, S. Ogasahara, Z. Wei, and K. Kouno. A reram-based physically unclonable function with bit error rate lt; 0.5 In 2016 IEEE Symposium on VLSI Technology, pages 1–2, 2016.

  65. K. Zhao and L. Ge. A survey on the internet of things security. In 2013 Ninth International Conference on Computational Intelligence and Security, pages 663–667, 2013.

  66. X. Zhu, S. Millendorf, X. Guo, D. M. Jacobson, K. Lee, M. M. Nowak S. H. Kang, and D. Fazla. Pufs based on resistivity of mram magnetic tunnel junctions, 03 2015.

Download references

Acknowledgements

This project has been partially supported by Arizona Board of Regents under Grants 1003074 and 1003074. The authors would like to thank their colleagues from the pilot manufacturing facility at Virginia Tech that allowed us to produce quality samples for this work. We thank the anonymous reviewers for their valuable comments which helped us improve the quality and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Afghah.

Additional information

This work was partially supported by Arizona Board of Regents, Grant Numbers: 1003073 & 1003074.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afghah, F., Cambou, B., Abedini, M. et al. A ReRAM Physically Unclonable Function (ReRAM PUF)-Based Approach to Enhance Authentication Security in Software Defined Wireless Networks. Int J Wireless Inf Networks 25, 117–129 (2018). https://doi.org/10.1007/s10776-018-0391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-018-0391-6

Keywords

Navigation