Chaos Synchronization of Complex Network Based on Signal Superposition of Single Variable

  • Peng LiEmail author
  • Baiyang Li
  • Jun Mou
  • Chunfeng Luo


Chaos synchronization of complex network with uncertain topological structure and coupling coefficient is used to study. By designing appropriate kinetic equation of network node, the chaos synchronization of the complex network is achieved. The unknown parameters and transported values of all the kinetic equations are identified simultaneously in the process of synchronization. When sets the parameter CT for a specific value, the transported values of complex network node is the superposition of specific parameter of passed node. Lorenz system is taken for example to demonstrate the effectiveness of the presented method for a complex network of arbitrary topological type, and the dynamics analysis of the Lorenz chaotic system is given, the results we get including the Lyapunov exponents spectrum and its corresponding bifurcation diagram, and its corresponding analysis of SE complexity algorithm and C0 complexity algorithm are analysis briefly. In this paper, 0–1 test is given respectively. Discusses the influence of parameters on the synchronization performance. It is found that the synchronization performance of the complex network is very stable.


Chaotic synchronization Complex network Single variable Signal superposition Dynamics analysis The 0–1 test SE complexity algorithm and C0 complexity algorithm 



This paper is supported by Natural Science Foundation of Liaoning, China (2015020031 and 20170540060), Science and Technology Project of Dalian, China (2015A11GX011) and Basic Scientific Research Projects of Colleges and Universities of Liaoning, China (2017J045 and 2017J046).


  1. 1.
    L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Physical Review Letters, Vol. 64, No. 8, pp. 821–824, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. Khan, Hybrid function projective synchronization of chaotic systems via adaptive control, International Journal of Dynamics and Control, Vol. 5, No. 4, pp. 1114–1121, 2016.MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Bouzeriba, A. Boulkroune and T. Bouden, Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control, Neural Computing and Applications, Vol. 27, No. 5, pp. 1349–1360, 2016.CrossRefzbMATHGoogle Scholar
  4. 4.
    S. Vaidyanathan, V. T. Pham and C. K. Volos, Adaptive backstepping control, synchronization and circuit simulation of a 3-D Novel Jerk chaotic system with two hyperbolic sinusoidal nonlinearities, Archives of Control Sciences, Vol. 24, No. 3, pp. 375–403, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S. Vaidyanathan, Analysis, adaptive control and synchronization of a Novel 4-d hyperchaotic hyperjerk system via backstepping control method, Archives of Control Sciences, Vol. 26, No. 3, pp. 311–338, 2016.MathSciNetCrossRefGoogle Scholar
  6. 6.
    X. Lin, S. Zhou and H. Li, Chaos and synchronization in complex fractional-order Chua’s system, International Journal of Bifurcation and Chaos, Vol. 26, No. 03, pp. 1595–1603, 2016.CrossRefzbMATHGoogle Scholar
  7. 7.
    J. Yan, X. Liu and D. Feng, New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems, Nonlinear Dynamics, Vol. 79, No. 1, pp. 1–9, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    C. Wang, Y. He, J. Ma, et al., Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems, Complexity, Vol. 20, No. 1, pp. 64–73, 2015.MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Shahzad, V. T. Pham, M. A. Ahmad, et al., Synchronization and circuit design of a chaotic system with coexisting hidden attractors, The European Physical Journal Special Topics, Vol. 224, No. 8, pp. 1637–1652, 2015.CrossRefGoogle Scholar
  10. 10.
    I. Ahmad, A. B. Saaban, A. B. Ibrahim, et al., Global chaos synchronization of new chaotic system using linear active control, Complexity, Vol. 21, No. 1, pp. 379–386, 2015.MathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Ding and Q. Han, Master–slave synchronization criteria for chaotic hindmarsh–rose neurons using linear feedback control, Complexity, Vol. 21, No. 5, pp. 319–327, 2016.MathSciNetCrossRefGoogle Scholar
  12. 12.
    L. M. Pecora and T. L. Carroll, Synchronization of chaotic systems, Chaos, Vol. 25, No. 9, pp. 2891–5100, 2015.CrossRefzbMATHGoogle Scholar
  13. 13.
    D. H. Ji, J. H. Park, W. J. Yoo, S. C. Won and S. M. Lee, Synchronization criterion for Lur’e type complex dynamical networks with time-varying delay, Physics Letters A, Vol. 374, No. 10, pp. 1218–1227, 2010.CrossRefzbMATHGoogle Scholar
  14. 14.
    N. Kouvaris, A. Provata and D. Kugiumtzis, Detecting synchronization in coupled stochastic ecosystem networks, Physics Letters A, Vol. 374, No. 4, pp. 507–515, 2010.CrossRefzbMATHGoogle Scholar
  15. 15.
    E. J. Agnes, R. Erichsen Jr. and L. G. Brunnet, Synchronization regimes in a map-based model neural network, Physica A, Vol. 389, No. 3, pp. 651–658, 2010.CrossRefGoogle Scholar
  16. 16.
    K. Li and C. H. Lai, Adaptive–impulsive synchronization of uncertain complex dynamical networks, Physics Letters A, Vol. 372, No. 10, pp. 1601–1606, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Y. C. Hung, Y. T. Huang, M. C. Ho and C. K. Hu, Paths to globally generalized synchronization in scale-free networks, Physical Review E, Vol. 77, No. 1, p. 016202, 2008.CrossRefGoogle Scholar
  18. 18.
    G. M. He and J. Y. Yang, Adaptive synchronization in nonlinearly coupled dynamical networks, Chaos, Solitons and Fractals, Vol. 38, No. 5, pp. 1254–1259, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    P. Checco, M. Biey and L. Kocarev, Adaptive synchronization in nonlinearly coupled dynamical networks, Chaos, Solitons and Fractals, Vol. 35, No. 3, pp. 562–577, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A. N. Pisarchik, R. Jaimes-Reátegui, R. Sevilla-Escoboza and S. Boccaletti, Experimental approach to the study of complex network synchronization using a single oscillator, Physical Review E, Vol. 79, No. 5, p. 055202, 2009.CrossRefGoogle Scholar
  21. 21.
    L. Chen, C. Qiu and H. B. Huang, Synchronization with on-off coupling: Role of time scales in network dynamics, Physical Review E, Vol. 79, No. 4, p. 045101, 2009.CrossRefGoogle Scholar
  22. 22.
    L. Lü and L. Luan, Lag synchronization of spatiotemporal chaos in a weighted network with ring connection, Acta Physica Sinica, Vol. 58, No. 7, pp. 4463–4468, 2009 (in Chinese).zbMATHGoogle Scholar
  23. 23.
    Y. Zhang and Q. L. Han, Network-based synchronization of delayed neural networks, IEEE Transactions on Circuits and Systems I Regular Papers, Vol. 190, No. 3, pp. 155–164, 2016.MathSciNetGoogle Scholar
  24. 24.
    T. Yang, Z. Meng, G. Shi, et al., Network synchronization with nonlinear dynamics and switching interactions, IEEE Transactions on Automatic Control, Vol. 61, No. 10, pp. 3103–3108, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    X. Wu, Z. H. Guan, Z. Wu, et al., Chaos synchronization between Chen system and Genesio system, Physics Letters A, Vol. 364, No. 6, pp. 484–487, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    A. E. Matouk, Chaos synchronization of a fractional-order modified Van der Pol–Duffing system via new linear control, backstepping control and Takagi–Sugeno fuzzy approaches, Complexity, Vol. 21, No. S1, pp. 116–124, 2016.MathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Ouannas, A. T. Azar and S. Vaidyanathan, A robust method for new fractional hybrid chaos synchronization, Mathematical Methods in the Applied Sciences, Vol. 40, No. 5, pp. 1804–1812, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    B. Xin, L. Liu, G. Hou, et al., Chaos synchronization of nonlinear fractional discrete dynamical systems via linear control, Entropy, Vol. 19, No. 7, p. 351, 2017.CrossRefGoogle Scholar
  29. 29.
    M. M. Aziz and S. F. Al-Azzawi, Hybrid chaos synchronization between two different hyperchaotic systems via two approaches, Optik-International Journal for Light and Electron Optics, Vol. 138, pp. 328–340, 2017.CrossRefGoogle Scholar
  30. 30.
    A. T. Azar, A. Ouannas and S. Singh, Control of new type of fractional chaos synchronization. In International Conference on Advanced Intelligent Systems and Informatics, pages 47–56. Springer, Cham, 2017.Google Scholar
  31. 31.
    K. Sun, S. He, C. Zhu and Y. He, Analysis of chaotic complexity characteristics based on C0 algorithm, Acta Electronica Sinica, Vol. 41, No. 9, pp. 1765–1771, 2013.Google Scholar
  32. 32.
    K. Sun, X. Liu and C. Zhu, The 0–1 test algorithm for chaos and its applications, Chinese Physics B: English Edition, Vol. 19, No. 11, pp. 200–206, 2010.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science and EngineeringDalian Polytechnic UniversityDalianPeople’s Republic of China

Personalised recommendations