On Maximizing Transmission Reliability for Real-Time Routing in Multi-hop Wireless LANs


Three factors have been often shown to significantly affect the reliability of real-time transmission in wireless local area networks—transmission rate, power, and packet size. We analyze these factors and determine the optimal combination of factors subject to time constraints that yields the most reliable transmission of real-time data. We propose a cross-layer framework to jointly design the routing and MAC protocol combined with our optimization approach. The approach under a non-real-time routing protocol that produces a path metric is compared with a real-time routing protocol. Additionally, the real-time routing protocol enhances a guaranteed rate with our approach. Our experiments reveal that real-time performance in terms of miss ratio and throughput is significantly increased in lossy link and heavy traffic environments. Miss ratio and average throughput are improved by up to 30% over a state-of-the art routing protocol and 35% over a MAC protocol, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    IEEE 802.11,Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standard, 1999.

  2. 2.

    IEEE 802.11h,Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standard, 2003.

  3. 3.

    IEEE 802.11e,Wireless medium access control (MAC) and physical layer (PHY) specifications: Medium access control (MAC) enhancements for quality of service (QoS). IEEE Standard, 2005.

  4. 4.

    Mokhtar S. Bazaraa. Nonlinear Programming: Theory and Algorithms, Wiley Publishing, 3rd edition, 2013.

  5. 5.

    Boris Bellalta, Luciano Bononi, Raffaele Bruno and Andreas Kassler. Next generation IEEE 802.11 wireless local area networks: Current status, future directions and open challenges. Computer Communications, 75:1–25, 2016.

  6. 6.

    J. Le Boudec and B. Radunovic. Rate Adaptation, Power Adaptation and Mutual Exclusion in Variable Rate Wireless Networks. In RAWNET, 2005.

  7. 7.

    Azzedine Boukerche and Amir Darehshoorzadeh. Opportunistic routing in wireless networks: Models, algorithms, and classifications. volume 47, pages 22:1–22:36, New York, NY, USA, November 2014. ACM.

  8. 8.

    Y. Chang. Dynamic optimal fragmentation with rate adaptation wireless mobile networks. Dissertation in Georgia Tech, 2007.

  9. 9.

    Yusun Chang, Christopher P. Lee, Bongkyoung Kwon, and John A. Copeland. Dynamic optimal fragmentation with rate adaptation for goodput enhancement in WLANs. In ICWN, pages 12–17, 2007.

  10. 10.

    X. Cheng, P. Mohapatra, S. Lee, and S. Banerjee. Maria: Interference-aware admission control and QoS routing in wireless mesh networks. In ICC, pages 2865–2870, 2008.

  11. 11.

    D. S. J. De Couto, D. Aguayo, B. A. Chambers and R. Morris. Performance of multihop wireless networks: shortest path is not enough. In SIGCOMM, 33(1):83–88, 2003.

  12. 12.

    Q. Dong, S. Banerjee, M. Adler, and A. Misra. Minimum energy reliable paths using unreliable wireless links. In In MobiHoc, pages 449–459, New York, NY, USA, 2005. ACM.

  13. 13.

    E. Felemban, C. Lee and E. Ekici. MMSPEED: Multipath Multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. Trans. on Mobile Computing, 5(6):738–754, 2006.

  14. 14.

    V. K. Garg. Wireless Communications and Networking. Morgan Kaufmann, 2007.

  15. 15.

    M. M. Gooley and B. W. Wah. Speculative search: An efficient search algorithm for limited memory. In Tools for Artificial Intelligence, 1990.,Proceedings of the 2nd International IEEE Conference on, pages 194–200, Nov 1990.

  16. 16.

    B. Hughes and V. Cahill. Achieving real-time guarantees in mobile wireless ad hoc networks. In RTSS, pages 37–40, 2004.

  17. 17.

    D. Kim and C. K. Toh, F-pcm: a fragmentation-based power control mac protocol for ieee 802.11 mobile ad hoc networks: Research articles. Wirel. Commun. Mob. Comput., 6(5):727–739, 2006.

  18. 18.

    J. Kim, S. Kim, S. Choi, and D. Qiao. Cara: Collision-aware rate adaptation for ieee 802.11 WLANs. In In INFOCOM, 2006.

  19. 19.

    K. K. Leung and L. Wang. Controlling QoS by integrated power control and link adaptation in boradband wireless networks. European Trans on Telecommunications, 11(4), 2000.

  20. 20.

    D. Li and X. Sun. Nonlinear Integer Programming. Springer, 2006.

  21. 21.

    Sedrati Maamar and Taleb hafnaoui. Impact of routing protocols on the quality of transmission for video streaming. In Proceedings of the International Conference on Internet of Things and Cloud Computing, ICC ’16, pages 81:1–81:7, New York, NY, USA, 2016. ACM.

  22. 22.

    D. Qiao, S. Choi and K. G. Shin. Goodput analysis and link adaptation for IEEE 802.11a wireless LANs. Trans. on Mobile Computing, 1(4):278–292, 2002.

  23. 23.

    Daji Qiao, Sunghyun Choi, Amjad Soomro, and Kang G. Shin. Energy-efficient pcf operation of ieee 802.11a wlans via transmit power control. volume 42, pages 39–54, New York, NY, USA, May 2003. Elsevier North-Holland, Inc.

  24. 24.

    J. W. Robinson and T. S. Randhawa. Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function. IEEE Journal on Selected Areas in Communications, 22(5):917–928, 2004.

  25. 25.

    Kuei-Ping Shih, San-Yuan Wang, Chien-Min Chou, and Li-Jie Cheng. A dynamic rate adaptation with fragmentation mac protocol against channel variation for wireless LANs. In In ISCC, pages 143–148, 2008.

  26. 26.

    J. Tang and X. Zhang. Quality-of-service driven power and rate adaptation for multichannel communications over wireless links. Trans. on Wireless Communications, 6(12):4349–4360, 2007.

  27. 27.

    Danilo Tardioli, Domenico Sicignano and Jos Luis Villarroel. A wireless multi-hop protocol for real-time applications. Computer Communications, 55:4–21, 2015.

  28. 28.

    P. Venkataraman. Applied Optimization with MATLAB Programming. Wiley, 2nd edition, 2009.

  29. 29.

    Starsky H. Y. Wong, Songwu Lu, Hao Yang, and Vaduvur Bharghavan. Robust rate adaptation for 802.11 wireless networks. In MOBICOM, pages 146–157, 2006.

  30. 30.

    J. Wyk and L. Linde. Bit error probability for a M-ary QAM OFDM-based system. In AFRICON, Sept., 2007.

Download references

Author information



Corresponding author

Correspondence to Junwhan Kim.

Appendix: Sketch of Proof for det(H)

Appendix: Sketch of Proof for det(H)

Equation 20 shows the determinant of Equation 16 which is 3 by 3 matrix. We have to show that Equation 20 is positive.

$$\begin{aligned} det(H) = {\varGamma } - {\varDelta } + {\varLambda } \end{aligned},$$


$$\begin{aligned} {\varGamma }= & {} \frac{\partial ^2p_e}{\partial l^2}\left( \frac{\partial ^2p_e}{\partial r^2}\cdot \frac{\partial ^2p_e}{\partial p_t^2} - \frac{\partial ^2p_e}{\partial p_t \partial r}\cdot \frac{\partial ^2p_e}{\partial r \partial p_t}\right) \nonumber \\ {\varDelta }= & {} \frac{\partial ^2p_e}{\partial r \partial l}\left( \frac{\partial ^2p_e}{\partial l \partial r}\cdot \frac{\partial ^2p_e}{\partial p_t^2} - \frac{\partial ^2p_e}{\partial p_t \partial r}\cdot \frac{\partial ^2p_e}{\partial l \partial p_t} \right) \nonumber \\ {\varLambda }= & {} \frac{\partial ^2p_e}{\partial p_t \partial l}\left( \frac{\partial ^2p_e}{\partial l \partial r}\cdot \frac{\partial ^2p_e}{\partial r \partial p_t} - \frac{\partial ^2p_e}{\partial r^2} \cdot \frac{\partial ^2p_e}{\partial l \partial p_t }\right) \nonumber \\ \frac{\partial ^2p_e}{\partial l^2}= & {} -64\cdot \alpha \cdot ln\left( 2A\right) \cdot A^{8l} \nonumber \\ \frac{\partial ^2p_e}{\partial r \partial l}= & {} 8\cdot A^{8l-1}\cdot \frac{\partial p_b}{\partial r}\left( 1- lnA\right) \nonumber \\ \frac{\partial ^2p_e}{\partial p_t \partial l}= & {} 8\cdot A^{8l-1}\cdot \frac{\partial p_b}{\partial p_t}\left( 1- lnA\right) \nonumber \\ \frac{\partial ^2p_e}{\partial l \partial r}= & {} 8\cdot \alpha \cdot \frac{\partial p_b}{\partial r} \cdot A^{8l-1}\cdot \left( 1+8l \cdot lnA\right) \nonumber \\ \frac{\partial ^2p_e}{\partial r^2}= & {} -8\cdot \left( 8l-1\right) A^{8l-1}\cdot \left( \frac{\partial p_b}{\partial r}\right) ^2+8l\cdot \alpha \cdot A^{8l-1}\cdot \frac{\partial ^2 p_b}{\partial r^2} \nonumber \\ \frac{\partial ^2p_e}{\partial p_t \partial r}= & {} -8\cdot \left( 8l-1\right) A^{8l-1}\cdot \left( \frac{\partial p_b}{\partial r}\right) ^2+8l \cdot \alpha \cdot A^{8l-1}\cdot \frac{\partial ^2 p_b}{\partial r \partial p_t} \nonumber \\ \frac{\partial ^2p_e}{\partial l \partial p_t}= & {} 8\cdot \alpha \cdot \frac{\partial p_b}{\partial p_t} \cdot A^{8l-1}\cdot \left( 1+8l \cdot lnA\right) \nonumber \\ \frac{\partial ^2p_e}{\partial r \partial p_t}= & {} -8\cdot \left( 8l-1\right) A^{8l-1}\cdot \left( \frac{\partial p_b}{\partial p_t}\right) ^2+8l \cdot \alpha \cdot A^{8l-1}\cdot \frac{\partial ^2 p_b}{\partial p_t\partial r} \nonumber \\ \frac{\partial ^2p_e}{\partial p_t^2}= & {} -8\cdot \left( 8l-1\right) A^{8l-1}\cdot \left( \frac{\partial p_b}{\partial p_t}\right) ^2+8l\cdot \alpha \cdot A^{8l-1}\cdot \frac{\partial ^2 p_b}{\partial p_t^2} \end{aligned},$$

where \(1-p_b = A\).

$$\begin{aligned} \frac{\partial p_b}{\partial r}=\frac{\partial p_b}{\partial p_t}= & {} -C \cdot \exp ^{-B} \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 p_b}{\partial r^2}=\frac{\partial ^2 p_b}{\partial p_t \partial r}= & {} -C \cdot \exp ^{-B}\cdot \frac{B}{r} \end{aligned}$$
$$\begin{aligned} \frac{\partial ^2 p_b}{\partial r \partial p_t}=\frac{\partial ^2 p_b}{\partial p_t^2}= & {} C \cdot \exp ^{-B}\cdot \frac{3log_2^m}{4r(m-1)} \end{aligned}$$

where \(\frac{3log_2m}{4(m-1)}\cdot \frac{E_b}{N_0} = B, \frac{\sqrt{m}-1}{\sqrt{m}log_2\sqrt{m}} \cdot \frac{1}{\sqrt{2}\pi } = C\)

Equations 22,23 and 24 are substituted for Eq. 21. AB, and C are positive. We realize that Eq. 22 \(< 0\), Eq.23 \(<0\) and Eq. 24 \(> 0\). Hence, \(\frac{\partial ^2p_e}{\partial r \partial l}\,< 0, \frac{\partial ^2p_e}{\partial p_t \partial l}\,< 0, \frac{\partial ^2p_e}{\partial l \partial r}\,< 0, \frac{\partial ^2p_e}{\partial r^2}\,< 0, \frac{\partial ^2p_e}{\partial l \partial p_t}\,< 0\), and \(\frac{\partial ^2p_e}{\partial r \partial p_t}\,<\) 0. We apply these inequalities to Eq. 20. Finally, we obtain as following.

$$\begin{aligned} {\varGamma } = 0,\ {\varDelta } < 0,\ and\ {\varLambda } > 0 \end{aligned}$$

Therefore, \(det(H) > 0\)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J. On Maximizing Transmission Reliability for Real-Time Routing in Multi-hop Wireless LANs. Int J Wireless Inf Networks 24, 424–435 (2017). https://doi.org/10.1007/s10776-017-0333-8

Download citation


  • Wireless networks
  • Real-time routing
  • Optimization