Skip to main content
Log in

Dirty RF: A New Paradigm

  • Invited Paper
  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript


The implementation challenge for new low-cost low-power wireless modem transceivers has continuously been growing with increased modem performance, bandwidth, and carrier frequency. Up to now we have been designing transceivers in a way that we are able to keep the analog (RF) problem domain widely separated from the digital signal processing design. However, with today’s deep sub-micron technology, analog impairments – “dirt effects” – are reaching a new problem level which requires a paradigm shift in the design of transceivers. Examples of these impairments are phase noise, non-linearities, I/Q imbalance, ADC impairments, etc. In the world of “Dirty RF” we assume to design digital signal processing such that we can cope with a new level of impairments, allowing lee-way in the requirements set on future RF sub-systems. This paper gives an overview of the topic and presents analytical evaluations of the performance losses due to RF impairments as well as algorithms that allow to live with imperfect RF by compensating the resulting error effects using digital baseband processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others


  1. R. H. Walden, Analog-to-digital converter survey and analysis, IEEE Journal of Selected Areas in Communication, Vol. 17, pp. 539–550, Apr. 1999

  2. H. Kobayashi, M. Morimura, K. Kobayashi, and Y. Onaya, Aperture Jitter Effects in Wideband ADC Systems, Proc. 6th IEEE International Conference on Electronics, Circuits and Systems (ICECS ’99), (Pafos, Cyprus), pp. 1705–1708, Sept. 1999

  3. S. S. Awad, Analysis of accumulated timing-Jitter in the time domain, IEEE Transactions on Instrument and Measurement, vol. 47, pp. 69–73, Feb. 1998.

  4. Dalt N. Da, Harteneck M., Sandner C., Wiesbauer A. (2002) On the Jitter Requirements of the Sampling Clock for Analog-to-Digital Converters. IEEE Transactions On Circuits Systems-I 49:1354–1360

    Article  Google Scholar 

  5. Dalt N. Da (2004) Effect of jitter on asynchronous sampling with finite number of samples. IEEE Transactions On Circuits Systems-II: Express Briefs 51(12):660–664

    Article  Google Scholar 

  6. M. Löhning and G. Fettweis, The effects of aperture jitter and clock jitter in wideband ADCs, Proc. International Workshop on ADC Modelling and Testing (IWADC 2003), (Perugia, Italy), pp. 187–191, 08–10 Sept. 2003

  7. M. Löhning and G. P. Fettweis, The effects of aperture Jitter and Clock Jitter in Wideband ADCs, Special Issue of the International Journal Computer Standards and Interfaces (CS&I), Vol. 29, No. 1, 2006, in press

  8. M. Löhning, Analyse und Modellierung der Effekte von Abtast-Jitter in Analog-Digital-Wandlern. PhD thesis, Technische Universität Dresden, Dresden, Germany, 2006

  9. G. Fettweis, M. Löhning, D. Petrovic, M. Windisch, P. Zillmann, and E. Zimmermann, Dirty RF, Proceedings of the 11th Wireless World Research Forum (WWRF11), (Oslo, Norway), 10–11, June 2004

  10. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4th ed., McGraw-Hill Education, 2002

  11. Demir A., Mehrotra A., Roychowdhury J. (2000) Phase noise in oscillators: A unifying theory and numerical methods for characterization. IEEE Transactions On Circuits Systems-I 47(5):655–674

    Article  Google Scholar 

  12. Cherry J. A., Snelgrove W. M. (1999) Clock Jitter and Quantizer Metastability in Continuous-Time Delta-Sigma Modulators. IEEE Transactions On Circuits Systems-II 46(6):661–676

    Article  Google Scholar 

  13. G. Matz and F. Hlawatsch, Time-Varying Power Spectra of NonStationary Random Processes. In B. Boashash (Ed.), Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, 1st ed., Elsevier, Oxford, UK, pp. 400–409, 2003

  14. A. W. Rihaczek, Signal energy distribution in time and frequency, IEEE Transactions on Information Theory, Vol. IT–14, pp. 369–374, May 1968

  15. J. C. O’Neill and W. J. Williams, Shift covariant time-frequency distributions of discrete signals, IEEE Transactions on Signal Processing, Vol. 47, pp. 133–150, Jan. 1999

  16. A. Armada, Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM), IEEE Transactions on Broadcasting, Vol. 47, pp. 153–159, June 2001

  17. P. Robertson and S. Kaiser, Analysis of the effects of phase noise in OFDM systems, Proc. ICC, 1995

  18. S. Wu and Y. Bar-Ness, A phase noise suppression algorithm for OFDM-Based WLANs, IEEE Communications Letters, Vol. 6, No. 12, pp. 535–537, Dec. 2002

  19. D. Petrovic, W. Rave, and G. Fettweis, Phase noise suppression in OFDM including intercarrier interference, Proc. Intl. OFDM Workshop (InOWo) 03, pp. 219–224, 2003

  20. D. Petrovic, W. Rave, and G. Fettweis, Intercarrier interference due to Phase Noise in OFDM – estimation and suppression, Proc. IEEE VTC Fall, Sept. 2004

  21. A. Oppenheim and R. Schafer, Discrete-Time Signal Processing. Prentice-Hall Inc., 1989

  22. IEEE, Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. High-speed Physical Layer in the 5 GHz Band, IEEE Std 802.11a-1999, 1999

  23. Razavi B. (1997) Design considerations for direct-conversion receivers. IEEE Transactions On Circuits Systems-II 44(6):428–435

    Article  Google Scholar 

  24. Crols J., Steyaert M. S. J. (1998) Low-IF topologies for high-performance analog front ends of fully integrated receivers. IEEE Transactions On Circuits Systems-II 45(3):269–282

    Article  Google Scholar 

  25. J. P. F.Glas, Digital I/Q imbalance compensation in a Low-IF receiver. in IEEE Global Communications Conference, Vol. 3, pp. 1461–1466, 1998

  26. S. Simoens, M. de Courville, F. Bourzeix, and P. de Champs, New I/Q imbalance modeling and compensation in OFDM systems with frequency offset, Proc. IEEE PIMRC 2002, Vol. 2, pp. 561–566, Sept. 2002

  27. Schuchert A., Hasholzner R., Antoine P. (2001) A novel IQ imbalance compensation scheme for the reception of OFDM signals. IEEE Trans. Consumer Electron 47(8):313–318

    Article  Google Scholar 

  28. M. Windisch and G. Fettweis, Blind I/Q imbalance parameter estimation and compensation in low-IF receivers, Proc. 1st Intl. Symposium on Control, Communications and Signal Processing (ISCCSP 2004), (Hammamet, Tunisia), 21–24 Mar. 2004

  29. M. Windisch and G. Fettweis, Standard-Independent I/Q imbalance compensation in OFDM direct-conversion receivers, Proc. 9th Intl. OFDM Workshop (InOWo), (Dresden, Germany), pp. 57–61, 15–16 Sept. 2004

  30. M. Windisch and G. Fettweis, Preamble design for an efficient I/Q imbalance compensation in OFDM direct-conversion receivers, Proc. 10th International OFDM Workshop (InOWo), (Hamburg, Germany), pp. 94–98, 2005

  31. M. Windisch and G. Fettweis, On the performance of standard-independent I/Q imbalance compensation in OFDM direct-conversion receivers, in Proc. 13th European Signal Processing Conference (EUSIPCO), (Antalya, Turkey), 4–8 Sept. 2005

  32. IEEE, Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Std 802.11a-1999, 1999

  33. A. R. S. Bahai and B. R. Saltzberg, Multi-Carrier Digital Communications – Theory and Applications of OFDM. Kluwer Academic/Plenum, 1999

  34. S. C. Cripps, RF Power Amplifiers for Wireless Communications. Artech House, 1999

  35. Mestdagh D. J. G., Spruyt P. M. P. (1996) A method to reduce the probability of clipping in DMT-based transceivers. IEEE Transactions on Communication 44(10):1234–1238

    Article  Google Scholar 

  36. Shepard S., Orriss J., Barton S. (1998) Asymptotic limits in peak envelope reduction by redundancy coding in OFDM modulation. IEEE Transactions on Communication 46(1):5–10

    Article  Google Scholar 

  37. P. Zillmann and G. Fettweis, On the capacity of multicarrier transmission over non-linear channels, Vehicular Technology Conference, Stockholm, 29 May–1 June, 2005

  38. Tellado J., Hoo L., Cioffi J. M. (2003) ML Detection of nonlinearly distorted multicarrier symbols by iterative decoding. IEEE Transactions on Communication 51(2):218–228

    Article  Google Scholar 

  39. Chen H., Haimovich A. M. (2003) Iterative estimation and cancellation of clipping noise for OFDM. IEEE Communications Letters 7(7):305–307

    Article  Google Scholar 

  40. A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed. McGraw-Hill Inc., 1991

  41. W. Rave, P. Zillmann, and G. Fettweis, Iterative correction and decoding of OFDM signals affected by Clipping, in Proc. MC-SS 2005, Germany, pp. 443–452, 14–16 Sept. 2005

  42. J. Heiskala and J. Terry, OFDM Wilreless LANs: A Theoretical and Practical Guide. SAMS, 2002

  43. Speth M., Fechtel S., Fock G., Mehr H. (1999) Optimum receiver design for wireless broad-band systems using OFDM – Part I. IEEE Transactions on Communication 47(11):1668–1677

    Article  Google Scholar 

  44. T. Pollet, P. Spruyt, and M. Moeneclaey, The BER performance of OFDM systems using non-synchronized sampling, Proc. GLOBECOM, pp. 253–257, Nov. 1994

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gerhard Fettweis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fettweis, G., Löhning, M., Petrovic, D. et al. Dirty RF: A New Paradigm. Int J Wireless Inf Networks 14, 133–148 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

index terms