Skip to main content
Log in

Image Classification Using Hybrid Classical-Quantum Neutral Networks

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

With the increasing complexity of image classification tasks, traditional convolutional neural networks face performance bottlenecks when dealing with intricate network structures. To address this issue, this paper proposes an image classification model based on a hybrid quantum-classical neural network. This model incorporates parameterized quantum circuits into convolutional networks to achieve a hybrid embedding and direct output. The information from fully connected layers is utilized as control parameters for quantum layers, and the pixel values of images are mapped to quantum bit states through amplitude encoding. This allows the network to simultaneously process information from multiple pixels. Furthermore, the introduction of the quantum natural gradient algorithm aims to better handle the geometric properties of the quantum parameter space, accelerating model convergence and improving training efficiency. Experimental results demonstrate an increase in recognition accuracy of \(2.42 \%\) and \(5.21 \%\) on the MNIST dataset compared to convolutional networks and fully connected networks, respectively. When compared to other algorithms of the same type, the proposed algorithm shows an improvement of \(2.14 \%\) and \(3.23 \%\), showcasing superior classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guo, M.H., Xu, T.X., Liu, J.J., Liu, Z.N., Jiang, P.T., Mu, T.J., Zhang, S.H., Martin, R.R., Cheng, M.M., Hu, S.M.: Attention mechanisms in computer vision: A survey. Comput. Vis. Med. 8, 331 (2022)

    Article  Google Scholar 

  2. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440 (2015)

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

  4. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich A.: Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 (2015)

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018)

  6. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484 (2016)

    Article  ADS  Google Scholar 

  7. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: An overview. In 2013 IEEE international conference on acoustics, speech and signal processing IEEE, pp. 8599–8603 (2013)

  8. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. Deep learning MIT press (2016)

  9. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56, 172 (2015)

    Article  ADS  Google Scholar 

  10. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science IEEE, pp. 124–134 (1994)

  11. Grover, L.K.: A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 212–219 (1996)

  12. Mandal, A., Banerjee, S., Panigrahi, P.K.: Hybrid phase-based representation of quantum images. Int. J. Theo. Phys. 62, 115 (2023)

    Article  Google Scholar 

  13. Du, S., Pan, M., Qiu, D., Zhi, Y.: Description abilities of quantum image states and their applications. Int. J. Theo. Phys. 61, 89 (2022)

    Article  MathSciNet  Google Scholar 

  14. Fan, P., Hou, M., Hu, W., Xiao, K.: Quantum image encryption based on block geometric and haar wavelet transform. Int. J. Theo. Phys. 61, 260 (2022)

    Article  MathSciNet  Google Scholar 

  15. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  16. McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 023023 (2016)

    Article  ADS  Google Scholar 

  17. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. Int. J. Comput. Vis. 116, 1 (2016)

    Article  MathSciNet  Google Scholar 

  18. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15, 1273 (2019)

    Article  Google Scholar 

  19. Li, Y., Zhou, R.G., Xu, R., Luo, J., Hu, W.: A quantum deep convolutional neural network for image recognition. Quantum Sci. Tech. 5, 044003 (2020)

    Article  ADS  Google Scholar 

  20. Parthasarathy, R., Bhowmik, R.T.: Quantum optical convolutional neural network: a novel image recognition framework for quantum computing. IEEE Access 9, 103337 (2021)

    Article  Google Scholar 

  21. Ghasemian, E., Razminia, A., Rostami, H.: Quantum machine learning based on continuous variable single-photon states: an elementary foundation for quantum neural networks. Quantum Inf. Process. 22, 378 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  22. Singh, M.P., Rajput, B.: Role of entanglement in quantum neural networks (QNN). J. Modern Phys. 6, 1908 (2015)

    Article  ADS  Google Scholar 

  23. Bai, Q., Hu, X.: Superposition-enhanced quantum neural network for multi-class image classification. Chin. J. Phys. 89, 378–389 (2024)

    Article  MathSciNet  Google Scholar 

  24. Kristensen, L.B., Degroote, M., Wittek, P., Aspuru-Guzik, A., Zinner, N.T.: An artificial spiking quantum neuron. NPJ Quantum Inf. 7, 59 (2021)

    Article  ADS  Google Scholar 

  25. Sun, Y., Zeng, Y., Zhang, T.: Quantum superposition inspired spiking neural network. Iscience 24 (2021)

  26. Huggins, W., Patil, P., Mitchell, B., Whaley, K.B., Stoudenmire, E.M.: Towards quantum machine learning with tensor networks. Quantum Sci. Tech. 4, 024001 (2019)

    Article  ADS  Google Scholar 

  27. Choi, J., Oh, S., Kim, J.: A tutorial on quantum graph recurrent neural network (QGRNN). In 2021 International Conference on Information Networking (ICOIN) IEEE, pp. 46–49 (2021)

  28. Tüuysüz, C., Carminati, F., Demirköz, B., Dobos, D., Fracas, F., Novotny, K., Potamianos, K., Vallecorsa, S., Vlimant, J.-R.: A quantum graph neural network approach to particle track reconstruction. arXiv:2007.06868 (2020)

  29. Ostaszewski, M., Grant, E., Benedetti, M.: Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021)

    Article  Google Scholar 

  30. Haug, T., Bharti, K., Kim, M.: Capacity and quantum geometry of parametrized quantum circuits. PRX Quantum 2, 040309 (2021)

    Article  ADS  Google Scholar 

  31. Pesah, A., Cerezo, M., Wang, S., Volkok, T., Sornborger, A.T., Coles, P.J.: Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11, 041011 (2021)

    Google Scholar 

  32. MacCormack, I., Delaney, C., Galda, A., Aggarwal, N., Narang, P.: Branching quantum convolutional neural networks. Phys. Rev. Res. 4, 013117 (2022)

    Article  Google Scholar 

  33. Stein, S., Mao, Y., Ang, J., Li, A.: Qucnn: A quantum convolutional neural network with entanglement based backpropagation. In 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC) IEEE, pp. 368–374 (2022)

  34. Sierra-Sosa, D., Telahun, M., Elmaghraby, A.: TensorFlow quantum: Impacts of quantum state preparation on quantum machine learning performance. IEEE Access 8, 215246 (2020)

    Article  Google Scholar 

  35. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541 (1989)

    Article  Google Scholar 

  36. Zhang, C., Yang, M., Zeng, H., Wen, J.: Pedestrian detection based on improved LeNet-5 convolutional neural network. J. Algo. Comput. Technol. 13 (2019)

  37. Yuan, Z.W., Zhang, J.: Feature extraction and image retrieval based on AlexNet. In Eighth International Conference on Digital Image Processing (ICDIP 2016) (SPIE), vol. 10033, pp. 65–69 (2016)

  38. Sengupta, A., Ye, Y., Wang, R., Liu, C., Roy, K.: Going deeper in spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95 (2019)

    Article  Google Scholar 

  39. Al-Qizwini, M., Barjasteh, I., Al-Qassab, H., Radha, H.: Deep learning algorithm for autonomous driving using googlenet. In 2017 IEEE intelligent vehicles symposium (IV) IEEE, pp. 89–96 (2017)

  40. Wu, Z., Shen, C., Van Den Hengel, A.: Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recogn. 90, 119 (2019)

    Article  ADS  Google Scholar 

  41. Chakraborty, S., Das, T., Sutradhar, S., Das, M., Deb, S.: An analytical review of quantum neural network models and relevant research. In 2020 5th International Conference on Communication and Electronics Systems (ICCES) IEEE, pp. 1395–1400 (2020)

  42. Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quantum Inf. Process. 13, 2567 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. Schuld, M.: Supervised quantum machine learning models are kernel methods. arXiv preprint arXiv:2101.11020 (2021)

  44. Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4, 043001 (2019)

    Article  ADS  Google Scholar 

  45. Volkok, T., Coles, P.J.: Large gradients via correlation in random parameterized quantum circuits. Quantum Sci. Technol. 6, 025008 (2021)

    Article  ADS  Google Scholar 

  46. Cariolaro, G., Pierobon, G.: Performance of quantum data transmission systems in the presence of thermal noise. IEEE Trans. Commu. 58, 623 (2010)

    Article  Google Scholar 

  47. Pan, C., Zhang, J.: Deep Learning-Based Quantum State Tomography With Imperfect Measurement. Int. J. Theo. Phys. 61, 227 (2022)

    Article  MathSciNet  Google Scholar 

  48. Henderson, M., Shakya, S., Pradhan, S., Cook, T.: Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Mach. Intell. 2 2 (2020)

  49. Kitajima, S., Shibata, F.: Decoherence in quantum environment at finite temperature. J. Phys. Soc. Japan 72, 1899 (2003)

    Article  ADS  Google Scholar 

  50. Ghonge, S., Vural, D.C.: Temperature as a quantum observable. J. Stat. Mech. Theory Exp. 2018, 073102 (2018)

    Article  MathSciNet  Google Scholar 

  51. Arthur, D., Date, P.: Hybrid quantum-classical neural networks. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) IEEE, pp. 49–55 (2022)

  52. Qi, J., Yang, C.H., Chen, P.Y.: QTN-VQC: an end-to-end learning framework for quantum neural networks. Phys. Scr. 99, 015111 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No.12204013), the key Scientific Research Foundation of Anhui Provincial Education Department (No.2023AH050481), the Natural Science Foundation of Anhui (No.1708085MA10), the Quality Engineering Project of Anhui Provincial Education Department (No.2021cyxy046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, YQ., Zhang, JH., Zhang, LH. et al. Image Classification Using Hybrid Classical-Quantum Neutral Networks. Int J Theor Phys 63, 125 (2024). https://doi.org/10.1007/s10773-024-05669-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05669-w

Keywords

Navigation