Skip to main content
Log in

Quantum Phase Properties of a State Driven by a Classical Field

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider a nonclassical state generated by an atom-cavity field interaction in presence of a driven field. In the scheme, the two-level atom is moved through the cavity and driven by a classical field. The atom interacts dispersively with the cavity field, which results in a photon-number-dependent Stark shift. Assuming that the atom enters the cavity in the excited state \(|{a} \rangle \), the obtained output cavity field is taken into account. The state vector \(|\psi (t)\rangle \) describes the entire atom-field system but in our work we deal with the statistical aspects of the cavity field only. The quantum state that corresponds to the output cavity field is obtained by tracing out the atom part from \(|{\psi (t)} \rangle \langle {\psi (t)} |\). Different quantum phase properties such as quantum phase distribution, angular Q phase function, phase dispersion are evaluated for the obtained radiation field. The second-order correlation function \(g^2(0)\), an indirect phase characteristic is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Glauber, R.J.: Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Sudarshan, E.C.G.: Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hillery, M.: Phys. Rev. A 61, 022309 (2000)

    Article  ADS  Google Scholar 

  4. Agarwal, G.S.: Phys. Rev. Lett. 57, 827–829 (1986)

    Article  ADS  Google Scholar 

  5. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  6. Yuan, Z., Kardynal, B.E., Stevenson, R.M., Shields, A.J., Lobo, C.J., Cooper, K., Beattie, N.S., Ritchie, D.A., Pepper, M.: Science 295, 102 (2002)

    Article  ADS  Google Scholar 

  7. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bouwmeester, D., Ekert, A., Zeilinger, A.: The physics of quantum information. Springer, Berlin (2000)

    Book  Google Scholar 

  11. Susskind, L., Glogower, J.: Phys. Phys. Fiz. 1, 49 (1964)

    MathSciNet  Google Scholar 

  12. Barnett, S.M., Pegg, D.T.: J. Phys. A: Math. Gen. 19, 3849 (1986)

    Article  ADS  Google Scholar 

  13. Pegg, D.T., Barnett, S.M.: J. Mod. Opt. 36, 7 (1989)

    Article  ADS  Google Scholar 

  14. Pegg, D.T., Barnett, S.M.: Phys. Rev. A 39, 1665 (1989)

    Article  ADS  Google Scholar 

  15. Dirac, P. A. M.: Proc. R. Soc. London, Ser. A 114, 243 (1927)

  16. Louisell, W.H.: Phys. Lett. 7, 60 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  17. Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., Lo, H.K.: Opt. Express 20, 12366 (2012)

    Article  ADS  Google Scholar 

  18. Raffaelli, F., Sibson, P., Kennard, J.E., Mahler, D.H., Thompson, M.G., Matthews, J.C.: Opt. Exp. 26, 19730 (2018)

    Article  Google Scholar 

  19. Horak, P.: J. Mod. Opt. 51, 1249 (2004)

    Article  ADS  Google Scholar 

  20. Denschlag, J et. al.: Science 287, 97 (2000)

  21. Ahn, J., Weinacht, T., Bucksbaum, P.: Science 287, 463 (2000)

    Article  ADS  Google Scholar 

  22. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  23. Park, Y., Depeursinge, C., Popescu, G.: Nat. Photonics 12, 578 (2018)

    Article  ADS  Google Scholar 

  24. Emery, V., Kivelson, S.: Nature 374, 434 (1995)

    Article  ADS  Google Scholar 

  25. Banerjee, S., Srikanth, R.: Phys. Rev. A 76, 062109 (2007)

    Article  ADS  Google Scholar 

  26. Banerjee, S., Ghosh, J., Ghosh, R.: Phys. Rev. A 75, 062106 (2007)

    Article  ADS  Google Scholar 

  27. Abdel-Aty, M., Azzeer, A., M. Abdalla, S.: Phys. A Stat. Mech. Appl. 389, 3375 (2010)

  28. Banerjee, S.: Open Quantum Systems: Dynamics of Nonclassical Evolution. Springer, Singapore (2018)

    Book  Google Scholar 

  29. Orlowski, A.: Phys. Rev. A 48, 727 (1993)

    Article  ADS  Google Scholar 

  30. Carruthers, P., Nieto, M.M.: Rev. Mod. Phys. 40, 411 (1968)

    Article  ADS  Google Scholar 

  31. Gupta, P., Pathak, A.: Phys. Lett. A 365, 393 (2007)

    Article  ADS  Google Scholar 

  32. Joshi, C., Jonson, M., Andersson, E., Öhberg, P.: J. Phys. B: At. Mol. Opt. Phys. 44, 245503 (2011)

    Article  ADS  Google Scholar 

  33. Alam, N., Mandal, S., Öhberg, P.: J. Phys. B: At. Mol. Opt. Phys. 48, 045503 (2015)

    Article  ADS  Google Scholar 

  34. Alam, N., Mandal, S.: Opt. Commun. 359, 221 (2016)

    Article  ADS  Google Scholar 

  35. Anetsberger, G., et al.: Nat. Phys. 5, 909 (2009)

    Article  Google Scholar 

  36. Joshi, C., Larson, J., Jonson, M., Andersson, E., Öhberg, P.: Phys. Rev. A 85, 033805 (2012)

    Article  ADS  Google Scholar 

  37. Joshi, C., Hutter, A., Zimmer, F.E., Jonson, M., Andersson, E., Öhberg, P.: Phys. Rev. A 82, 043846 (2010)

    Article  ADS  Google Scholar 

  38. Chatterjee, A., Dhar, H.S., Ghosh, R.: J. Phys. B: At. Mol. Opt. Phys. 45, 205501 (2012)

    Article  ADS  Google Scholar 

  39. Lemonde, M.-A., Didier, N., Clerk, A.A.: Phys. Rev. A 90, 063824 (2014)

    Article  ADS  Google Scholar 

  40. Knight, P. L., Gerry, G. C.: Introductory Quantum Optics, Cambridge University Press, (2005) (2005)

  41. Loudon, R., Knight, P.L.: J. Mod. Opt. 34, 709 (1987)

    Article  ADS  Google Scholar 

  42. Alsing, P., Guo, D.S., Carmichael, H.J.: Phys. Rev. A 45, 5135 (1992)

    Article  ADS  Google Scholar 

  43. Zheng, S.B.: Phys. Rev. A 74, 043803 (2006)

    Article  ADS  Google Scholar 

  44. Ghosh, A., Das, P.K.: Int. J. Theor. Phys. 47, 1731 (2008)

    Article  Google Scholar 

  45. Chen, C.Y., Feng, M., Gao, K.L.: Phys. Rev. A 73, 034305 (2006)

    Article  ADS  Google Scholar 

  46. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  47. Peng, J. S., Li, G. X., Zhou, P.: Phys. Rev. A, Vol. 46 (3), 1516 (1992)

  48. Agarwal, G.S., Chaturvedi, S., Tara, K., Srinivasan, V.: Phys. Rev. A 45, 4904 (1992)

    Article  ADS  Google Scholar 

  49. Carruthers, P., Nieto, M.M.: Rev. Mod. Phys. 40, 411 (1968)

    Article  ADS  Google Scholar 

  50. Husimi, K.: J. Phys. Soc. Jpn. 22, 264 (1940)

    Google Scholar 

  51. Thapliyal, K., Banerjee, S., Pathak, A.: Ann. Phys. 366, 4904 (2016)

    Article  Google Scholar 

  52. Thapliyal, K., Pathak, A., Sen, B., Perina, J.: Phys. Rev. A 90, 013808 (2014)

    Article  ADS  Google Scholar 

  53. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge, UK (2010)

    Google Scholar 

  54. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin, Heidelberg (2008)

    Book  Google Scholar 

  55. Mavrogordatos, Th.K.: J. Opt. 25, 2040 (2023)

    Article  Google Scholar 

  56. Parvin, B.: Phys. Scr. 99, 015117 (2024)

    Article  ADS  Google Scholar 

  57. Alemu, M., Russ, J.: Laser Res. 43, 267–279 (2022)

    Article  Google Scholar 

  58. Faraon, A., Majumdar, A., Vucković, J.: Phys. Rev. A 81, 033838 (2010)

    Article  ADS  Google Scholar 

  59. Leibfried, D., et al.: Science 304, 1476 (2004)

    Article  ADS  Google Scholar 

  60. Schmidt, P.O et al.: Science 309, 749 (2005)

Download references

Acknowledgements

Naveen Kumar acknowledges the financial support from the Council of Scientific and Industrial Research, Govt. of India (Grant no. 09/1256(0004)/2019-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Chatterjee, A. Quantum Phase Properties of a State Driven by a Classical Field. Int J Theor Phys 63, 124 (2024). https://doi.org/10.1007/s10773-024-05661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05661-4

Keywords

Navigation