Skip to main content
Log in

New Perceptions for the Soliton Solutions to the Complex Wave Patterns Model Against its Numerical Solutions

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The main target of this article is extracting new various types of the solitons emerging from the complex wave patterns which is famous model arising in telecommunications engineering line. These new visions of these solitons will be constructed in the framework of three impressive techniques that are used for the first time for this purpose. The three suggested different techniques are the Paul-Painlevé approach method (PPAM), the Ricatti-Bernolli Sub ODE method (RBSOM) and the variational iteration method VIM. The first and second techniques are the famous two ansatze methods while the third one is the famous numerical method. Many new different perceptions of the soliton solutions to the proposed model through these different algorithms that are implemented individually and parallel have been documented. Furthermore, the comparison that isn't only with the solutions achieved by these suggested techniques but also with that realized before via other authors who used various algorithms has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Weber, E., Nebeker, F.: The Evolution of Electrical Engineering. Piscataway. IEEE Press, New Jersey. ISBN 0-7803-1066-7 (1994)

  2. Tebue, E.T., Manemo, C.T., Rezazadeh, H., Bekir, A., Chu, Y.M.: Optical solutions of the (2 + 1)-dimensional hyperbolic nonlinear Schrödinger equation using two different methods. Results Phys. 19, 103514 (2020)

    Article  Google Scholar 

  3. Bekir, A., Zahran, E.H.M.: New visions of the soliton solutions to the modified nonlinear Schrodinger equation. Optik 232, 166539 (2021)

    Article  ADS  Google Scholar 

  4. Bekir, A., Zahran, E.M.H.: Three distinct and impressive visions for the soliton solutions to the higher-order nonlinear Schrodinger equation. Optik 228, 166157 (2021)

    Article  ADS  Google Scholar 

  5. Bekir, A., Zahran, E.H.M.: New vision for the soliton solutions to the complex Hirota-dynamical model. Phys Scr 96, 055212 (2021)

    Article  ADS  Google Scholar 

  6. Bekir, A., Zahran, E.M.H., Shehata, M.S.M.: Comparison between the new exact and numerical solutions of the Mikhailov-Novikov-Wang equation. Numer. Methods Partial Differ. Equ J. 40(2), e22775 (2021). https://doi.org/10.1002/num.22775

  7. Shehata, M.S.M., Rezazadeh, H., Jawad, A.J.M., Zahran, E.H.M., Bekir, A.: Optical solitons to a perturbed Gerdjikov-Ivanov equation using two different techniques. Rev. Mex. Fis. 67(5), 1–15 (2021)

  8. Hosseini, K., Osman, M.S., Mirzazadeh, M., Rabiei, F.: Investigation of different wave structures to the generalized third-order nonlinear Schrödinger equation. Optik 206, 164259 (2020)

    Article  ADS  Google Scholar 

  9. Mirzazadeh, M., Yıldırım, Y., Yaşar, E., Triki, H., Zhou, Q., Moshokoa, S.P., ZakaUllah, M., Seadawy, A.R., Biswas, A., Belic, M.: Optical solitons and conservation law of Kundu-Eckhaus equation. Optik 154, 551–557 (2018)

    Article  ADS  Google Scholar 

  10. Taghizadeh, N., Mirzazadeh, M., Tascan, F.: The first-integral method applied to the Eckhaus equation. Appl. Math. Lett. 25(5), 798–802 (2012)

    Article  MathSciNet  Google Scholar 

  11. Bekir, A., Zahran, E.M.H., Shehata, M.S.M.: The agreement between the new exact and the numerical solutions of the 3D-fractional Wazwaz-Benjamin-Bona-Mahony equation. J. Sci. Arts 20(2), 251–262 (2020)

    Google Scholar 

  12. Zahran, E.M.H., Bekir, A., Abu Arqub, O., Abukhaled, M.: New diverse types of soliton solutions to the Radhakrishnan-Kundu-Lakshmanan equation. AIMS Math. 8(4), 8985–9008 (2023)

    Article  MathSciNet  Google Scholar 

  13. Biswas, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons having weak non-local nonlinearity by two integration schemes. Optik 164, 380–384 (2018)

    Article  ADS  Google Scholar 

  14. Bekir, A., Shehata, M.S.M, Zahran, E.M.H.: New optical soliton solutions for the thin-film ferroelectric materials equation instead of the numerical solution; accepted for publication in J. Comput. Methods Diff. Equat. (2020)

  15. Zahran, E.H., Shehata, M.S.: The new solitary solutions of the foam drainage & (2+1) dimensional breaking soliton equations. Int. J. Basic Appl. Sci. 7(3), 39–44 (2018)

    Article  Google Scholar 

  16. Zahran, E.H., Khater, M.M.: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 40(3), 1769–1775 (2016)

    Article  MathSciNet  Google Scholar 

  17. Khater, M.M., Lu, D., Zahran, E.H.: Solitary wave solutions of the Benjamin–Bona–Mahoney–Burgers equation with dual power-law nonlinearity. Appl. Math. Inf. Sci 11(5), 1347–1351 (2017)

    Article  MathSciNet  Google Scholar 

  18. Nofal, T.A.: Simple equation method for nonlinear partial differential equations and its applications. J. Egypt. Math. Soc. 24, 204–209 (2016)

    Article  MathSciNet  Google Scholar 

  19. Yu, F., Yan, Z.: New rouge-waves and dark-bright soliton solutions for a coupled nonlinear Schrödinger equation with variables coefficients. Appl. Math. Comput. 233, 351–358 (2014)

    MathSciNet  Google Scholar 

  20. Younis, M., Sulaiman, T.A., Bilal, M., Rehman, S.U., Younas, U.: Modulation instability analysis optical and other solutions to the modified nonlinear Schrödinger equation. Commun. Theor. Phys. 72, 065001 (12pp) (2020)

    Article  ADS  Google Scholar 

  21. Das, A., Biswas, A., Ekici, M., Khan, S., Zhou, Q., Moshokoa, S.P.: Suppressing internet bottleneck with fractional temporal evolution of cubic-quartic optical solitons. Optik 182, 303–307 (2019)

    Article  ADS  Google Scholar 

  22. Gonzalez-Gaxiola, O., Biswas, A., Mallawi, F., Belic, M.: Cubic-quartic bright optical solitons by improved Adomian decomposition method. J. Adv. Res. 21, 161–167 (2020)

    Article  Google Scholar 

  23. Yildirim, Y., Biswas, A., Guggilla, P., Mallawi, F., Belic, M.R.: Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index. Optik 203, 163885 (2020)

    Article  ADS  Google Scholar 

  24. Wazwaz, A.M., Xu, G.Q.: Bright, dark, and Gaussons optical solutions for fourth order Schrodinger equation with cubic-quantic and logarithmic nonlinearities. Optik 202, 163564 (2020)

    Article  ADS  Google Scholar 

  25. Kudryashov, N.A.: Solitary wave solutions of hierarchy with non-local nonlinearity. Appl. Math. Lett. 103, 106155 (2020)

    Article  MathSciNet  Google Scholar 

  26. Kudryashov, N.A.: Highly dispersive solitary wave solutions of perturbed nonlinear Schr¨odinger equations. Appl. Math. Comput. 371, 124972 (2020)

    MathSciNet  Google Scholar 

  27. Li, B., Zhao, J., Pan, A., Mirzazadeh, M., Ekici, M., Zhou, Q., Liu, W.: Stable propagation of optical solitons in fiber lasers by using symbolic computation. Optik 178, 142–145 (2019)

    Article  ADS  Google Scholar 

  28. Tebue, E.T., Tsobgni-Fozap, D.C., Kenfack-Jiotsa, A., Kofane, T.C.: Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G′/G)-expansion method including the generalized Riccati equation. Eur. Phys. J. Plus 129(136) (2014)

  29. Tebue, E.T., Zayed, E.M.E.: New Jacobi elliptic function solutions, solitons and other solutions for the (2 + 1)-dimensional nonlinear electrical transmission line equation. Eur. Phys. J. Plus 133, 314 (2018)

    Article  Google Scholar 

  30. Tebue, E.T., Djoufack, Z.I.: New soliton solutions for a discrete electrical lattice using the Jacobi elliptical function method. Chin. J. Phys. - Taipei 56(3) (2018)

  31. AbdulKayum, M.D., Ara, S., Barman, H.K., Akbar, M.A.: Soliton solutions to voltage analysis in nonlinear electrical transmission lines and electric signals in telegraph lines. Results Phys. 18, 103269 (2020)

    Article  Google Scholar 

  32. Gao, W., Senel, M., Yel, G., Baskonus, H.M., Senel, B.: New complex wave patterns to the electrical transmission line model arising in network system. AIMS Math. 5(3), 1881–1892 (2020)

    Article  MathSciNet  Google Scholar 

  33. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: N-fold Darboux transformation and solitonic interactions for the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Nonlinear Dyn. 111, 2641–2649 (2023)

    Article  Google Scholar 

  34. Shen, Y., Tian, B., Zhou, T.Y., Cheng, C.D.: Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium. Chaos Solitons Fractals. 171, 113497 (2023)

    Article  MathSciNet  Google Scholar 

  35. Shen, Y., Tian, B., Cheng, C.D., Zhou, T.Y.: Pfaffian solutions and nonlinear waves of a (3 + 1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt system in fluid mechanics. Phys. Fluids 35, 025103 (2023)

    Article  ADS  Google Scholar 

  36. Shen, Y., Tian, B., Cheng, C.D., Zhou, T.Y.: N-soliton, Mth-order breather, Hth-order lump, and hybrid solutions of an extended (3+1)-dimensional Kadomtsev-Petviashvili equatio. Nonlinear Dyn. 111, 10407–10424 (2023)

    Article  Google Scholar 

  37. Shen, Y., Tian, B., Liu, S.H., Zhou, T.Y.: Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. 108, 2447–2460 (2022)

    Article  Google Scholar 

  38. Kudryashov, N.A.: The Painlevé approach for finding solitary wave solutions of nonlinear non-integrable differential equations. Optik 183, 642–649 (2019)

    Article  ADS  Google Scholar 

  39. Bekir, A., Shehata, M.S.M., Zahran, E.H.M.: Comparison Between the Exact Solutions of Three Distinct Shallow Water Equations Using the Painlev´e Approach and Its Numerical Solutions. Russ. J. Nonlinear Dyn. 16(3), 463–477 (2020)

    MathSciNet  Google Scholar 

  40. Bekir, A., Zahran, E.H.M.: Painleve approach and its applications to get new exact solutions of three biological models instead of its numerical solutions. Int. J. Mod. Phys. B 34(29), 2050270 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  41. Bekir, A., Zahran, E.H.M.: Optical soliton solutions of the thin-film ferro-electric materials equation according to the Painlevé approach. Opt. Quant. Electron. 53, 118 (2021)

    Article  Google Scholar 

  42. Yang, X.F., Deng, Z.C., Yi Wei, Y.: A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Differ. Equ. 117, (2015). https://doi.org/10.1186/s13662-015-0452-4

  43. Shehata, M.S.M., Rezazadeh, H., Zahran, E.H.M., Tala-Tebue, E., Bekir, A.: New Optical Soliton Solutions of the Perturbed Fokas-Lenells Equation. Commun. Theor. Phys. 71, 1275–1280 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  44. Wazwaz, A.M.: The variational iteration method for analytic treatment for linear and nonlinear ODEs. Appl. Math. Comput. 212, 120–133 (2009)

    MathSciNet  Google Scholar 

  45. Yusufoğlu, E., Bekir, A.: Application of the variational iteration method to the regularized long wave equation. Comput. Math. Appl. 54(7–8), 1154–1161 (2007)

    Article  MathSciNet  Google Scholar 

  46. Cattani, C.: Harmonic wavelet solutions of the Schrodinger equation. Int. J. Fluid Mech. 30, 463–472 (2003)

    Article  MathSciNet  Google Scholar 

  47. Khalique, C.M., Mhlanga, I.E.: Travelling waves and conservation laws of a (2+1)-dimensional coupling system with Korteweg-de Vries equation. Appl. Math. Nonlinear Sci. 3, 241–254 (2018)

    Article  MathSciNet  Google Scholar 

  48. Gao, W., Yel, G., Baskonus, H.M., et al.: Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation. Aims Math. 5, 507–521 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

• Conceptualization: Emad H.M. Zahran

• Data curation: Hijaz Ahmad

• Formal analysis: Emad H.M. Zahran

• Validation: Emad H.M. Zahran

• Funding and resources: Hijaz Ahmad

• Writing - original draft: Emad H.M. Zahran

• Writing - review editing: Hijaz Ahmad

Corresponding author

Correspondence to Hijaz Ahmad.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahran, E.H.M., Ahmad, H. New Perceptions for the Soliton Solutions to the Complex Wave Patterns Model Against its Numerical Solutions. Int J Theor Phys 63, 115 (2024). https://doi.org/10.1007/s10773-024-05631-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05631-w

Keywords

Navigation