Skip to main content
Log in

Particle in a Markov Cube by the Non-Classical Information Entropy Space

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Starting with a particle in the cube system, we investigate the exotic possibility that the quantum numbers (nx,ny,nz) satisfy the Markov equation. We find that the proposed particle in the Markov-cube system follows from a non-classical information entropic space by the quantum potential Q. We study the classical correspondents of the proposed particle in the Markov-cube system. According to our proposition, this particle identified by detailed measurements of the confinement particle-energy levels, is an artefact or occurs in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

References

  1. Bransden, B.H., Joachain, C.J.: Quantum mechanics. Essex: Pearson Education. England, pp. 156–159.

  2. Davies, J,H.: The physics of low-dimensional semiconductors: An introduction (6th reprint ed.). London Cambridge University Press. pp. 102–114.

  3. Griffiths, DJ.: Introduction to quantum mechanics (2nd ed.). Prentice Hall. New Jersey USA. pp. 121–201 (2014)

  4. Rice, C.V., Griffin, G.A.: Simple Syntheses of CdSe Quantum Dots. J. Chem. Educ. 85(6), 842 (2008). https://doi.org/10.1021/ed085p842

    Article  Google Scholar 

  5. Lodovico.Lappetito, Quantum dots: a true "particle in a box" system". Physics Open Lab. (2015). https://physicsopenlab.org/2015/11/20/quantum-dotsa-true-particle-in-a-box-system/

  6. Overney, R.M.: Quantum confinement. University of Washington. (2016). http://courses.washington.edu/overney/

  7. Zahn, D.R.T.: Surface and interface properties of semiconductor quantum dots by raman spectroscopy. Technische Universität Chemnitz. Retrieved 5 (2016). http://www.osiconference.org/osi2015/presentations/Tu2.3%20Zahn.pdf

  8. Bentolila, L.A., Ebenstein, Y.: Quantum Dots for In Vivo Small-Animal Imaging. J. Nucl. Med. 50(4), 49496 (2009). https://doi.org/10.2967/jnumed.108.053561

    Article  Google Scholar 

  9. Alberto, P., Fiolhais, C., Gil, V.M.S.: Relativistic particle in a box. Eur. J. Phys. 17(1), 19–24 (1996). https://doi.org/10.1088/0143-0807/17/1/004

    Article  Google Scholar 

  10. Geng, C., Di, X., Tang, X.: H. Han. Med. Phys. (2023). https://doi.org/10.1002/mp.16121

    Article  Google Scholar 

  11. Keen, C.E.: A sheet of quantum dots enhances Cherenkov imaging of radiotherapy dose, Physics World, (12 Jan 2023) UK, IOP Publishing Ltd.

  12. Fiscaletti D.: The Geometry of Quantum potential, WSP, pp. 37–40 (2018). https://doi.org/10.1142/10653.

  13. Weyl, H.: Sitzber. Preuss. Akad. Wiss. Berlin, 465, p. 8 (1918).

  14. Weyl, H.: Space, Time. Matter. Dover, New York (1922)

    Google Scholar 

  15. Wheeler, J.T.: Quantum measurement and geometry. Phys. Rev. D 41(2), 431 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wood, W.R., Papini, G.: A geometric approach to the quantum mechanics of de Broglie and Vigier. In: Jeffers, S., Roy, S., Vigier, JP., Hunter, G. (eds.) The Present Status of the Quantum Theory of Light. Fundamental Theories of Physics, vol 80. Springer, Dordrecht. pp 7-10 (1997). https://doi.org/10.1007/978-94-011-5682-0_25.

  17. Novello, M., Salim, J.M., Falciano, F.T.: On a geometrical description of quantum mechanics. Int. J. Geom. Methods Mod. Phys. 8(1), 87–98 (2011)

    Article  MathSciNet  Google Scholar 

  18. Fiscaletti, D., Licata, I.: Weyl geometries, Fisher information and quantum entropy in quantum mechanics. Int. J. Theor. Phys. 51, 3587–3595 (2012)

    Article  MathSciNet  Google Scholar 

  19. Resconi, G., Licata, I., Fiscaletti, D.: Entropy 15, 3602–3619 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Markoff, A.: Sur les formes quadratiques binaires ind´efinies. Math. Ann. 15, 381–406 (1879)

    Article  Google Scholar 

  21. Reutenauer, R.C.: From Christoffel words to Markoff numbers. Oxford University Press, Oxford (2019)

    Google Scholar 

  22. Aigner, A M.: Markov’s theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, pp. 31–41 (2013). https://doi.org/10.1007/978-3-319-00888-2.

  23. Lee, K., Li, L., Rabideau, M., Schiffler, R.: On the ordering of the Markov numbers, arXiv:2010.13010 [math.NT] (2022).

  24. G. Frobenius, Uber die Markoffschen Zahlen, S. B. Preuss. Akad. Wiss. Berlin (1913) 458–487; available ¨ in Gesammelte Abhandlungen Band III, Springer 598–627. (1968).

  25. Zagier, D.: On the number of Markoff numbers below a given bound. Math. Comp. 39(160), 709–723 (1982). (MR669663)

    Article  MathSciNet  Google Scholar 

  26. Matheus, C., Moreira, C.G.: Diophantine Approximation. Lagrange and Markov Spectra, and Dynamical Cantor Sets, Notices of the American mathematical society 68(8), 1301–1311 (2021)

    Google Scholar 

  27. Guy, R.K.: Markoff numbers. §D12 in unsolved problems in number theory, 2nd ed. New York: Springer-Verlag, pp. 166–168 (1994).

  28. Sloane, N.J.A., Conway, J.H.: Sequences A002559/M1432 and A030452 in The On-Line Encyclopedia of Integer Sequences. OEIS Foundation Inc. (2023). https://oeis.org/A002559.

  29. Weisstein, E.W.: Markov Number, from MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MarkovNumber.html.

  30. Castro, C., Mahecha, J.: On nonlinear quantum mechanics, Brownian motion, Weyl geometry and Fisher information. Prog. Phys. 1, 38–45 (2006)

    Google Scholar 

  31. Falciano, F.T., Novello, M., Salim, J.M.: Geometrizing relativistic quantum mechanics. Found. Phys. 40, 1885–1901 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bohm, D.: A Suggested Interpretation of the Quantum Theory in Terms of “Hidden Variables” I. Phys. Rev. 85(2), 166–179 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  33. Bohm, D.: A Suggested Interpretation of the Quantum Theory in Terms of “Hidden Variables”, II. Phys. Rev. 85(2), 180–193 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  34. Choi, J.R.: Classical Limit of Quantum Mechanics for Damped Driven Oscillatory Systems: Quantum-Classical Correspondence. Front. Phys. 9, 670750 (2021). https://doi.org/10.3389/fphy.2021.670750

    Article  Google Scholar 

  35. Planck M.: Vorlesungen uber die Theorie der Wärmestralhung. ASIN: B014GGCT5M. German: Leopold Classic Library, pp 150–160 (2015).

  36. Bohr, N.: The Theory of spectra and atomic constitution. London: Cambridge University Press, pp. 120–127 (1922).

  37. Zettili, N.: Quantum mechanics: concepts and applications. John Wiley and Sons Ltd, England, pp. 231–232 (2001).

Download references

Acknowledgements

I would like to thank the anonymous referee for the useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

I am the only author.

Corresponding author

Correspondence to Elias Koorambas.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PACS-numbers: 12.38.Aw, 03.65.-w, 03.67.-a, 42.50.Lc, 04.60.-m MSC-numbers: 11-00, 11Dxx, 11Jxx, 11J06.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koorambas, E. Particle in a Markov Cube by the Non-Classical Information Entropy Space. Int J Theor Phys 63, 81 (2024). https://doi.org/10.1007/s10773-024-05609-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05609-8

Keywords

Navigation