Skip to main content
Log in

Genuine Multipartite Quantum Steering can be Generated by Enhanced Raman Scattering without Optical Cavity

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Multipartite quantum steering correlation among Raman scattering beams generated by the enhanced Raman scattering process is investigated. In this single-pass nonlinear process, without an optical resonant cavity, Raman scattering beams of the same order can be significantly enhanced through differential amplification of pump, resulting in enhanced Raman scattering beams. Based on the multipartite quantum steering correlation criterion, tripartite quantum steering and five-partite quantum steering can be obtained by the first-order Raman scattering and the second-order Raman scattering, respectively. This scheme of the generation of multipartite quantum steering enriches the types of quantum manipulation and can be applied to quantum information work such as quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Zhai, S.Q., Kang, X.L., Liu, K.: Acta Phys. Sin. 70, 160301 (2021)

    Article  Google Scholar 

  2. Pan, K.Y., Chen, T.H., Xiao, C., Yu, Y.B., Chen, A.X.: Results Phys. 37, 105518 (2022)

    Article  Google Scholar 

  3. Liu, Y., Liang, S.L., Jin, G.R., Yu, Y.B.: Opt. Express 28, 2722–2729 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Reid, M.D.: Phys. Rev. A. 88, 062338 (2013)

    Article  ADS  Google Scholar 

  5. Sainz, A.B., Aolita, L., Brunner, N., Gallego, R., Skrzypczyk, P.: Phys. Rev. A. 94, 012308 (2016)

    Article  ADS  Google Scholar 

  6. Xiang, Y., Kogias, I., Adesso, G., He, Q.Y.: Phys. Rev. A. 95, 010101 (2017)

    Article  ADS  Google Scholar 

  7. Kogias, I., Lee, A.R., Ragy, S., Adesso, G.: Phys. Rev. A. 114, 060403 (2015)

    CAS  Google Scholar 

  8. Bowles, J., V\(\acute{e}\)rtesi, T., Quintino, M. T., Brunner, N.: Phys. Rev. Lett. 112, 200402 (2014)

  9. Armstrong, S., Wang, M., Teh, R.Y., Gong, Q.H., He, Q.Y., Janousek, J., Bachor, H.A., Reid, M.D., Lam, P.K.: Nat. Phys. 5, 167–172 (2015)

    Article  Google Scholar 

  10. Qin, Z. Z., Deng, X. W., Tian, C. X., Wang, M. H., Su, X. l., Xie, C. D., Peng, K. C. Phys. Rev. A. 95, 052114 (2017)

  11. Li, C.M., Lo, H.P., Chen, L.Y., Yabushita, A.: Opt. Commun. 410, 956–960 (2018)

    Article  ADS  CAS  Google Scholar 

  12. Yang, H., Ding, Z.Y., Wang, D., Yuan, H., Song, X.K., Yang, J., Zhang, C.J., Ye, L.: Phys. Rev. A. 101, 042115 (2020)

    Article  ADS  CAS  Google Scholar 

  13. Qars, J.E., Daoud, M., Laamara, R.A., Habiballah, N.: Eur. Phys. J. Plus 135, 87 (2020)

    Article  Google Scholar 

  14. Li, Z.C., Zeng, H.S.: Eur. Phys. J. Plus 135, 60 (2020)

    Article  ADS  Google Scholar 

  15. Zhu, S.N., Zhu, Y.Y., Ming, N.B.: Science 278, 843–846 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Xu, P., Zhu, S.N., Yu, X.Q., Ji, S.H., Gao, Z.D., Zhao, G., Zhu, Y.Y., Ming, N.B.: Phys. Rev. B. 72, 064307 (2005)

    Article  ADS  Google Scholar 

  17. Kaur, E., Wang, X.T., Wilde, M.M.: Phys. Rev. A. 96, 022332 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Kimble, H.J.: Nature 453, 1023–1030 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. He, Q.Y., Reid, M.D.: Phys. Rev. Lett. 111, 250403 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Rahav, S., Mukamel, S.: Phys. Rev. B. 79, 165103 (2009)

    Article  ADS  Google Scholar 

  21. Zhen, Y.Z., Zheng, Y.L., Cao, W.F., Li, L., Chen, Z.B., Liu, N.L., Chen, K.: Phys. Rev. A. 93, 012108 (2016)

    Article  ADS  Google Scholar 

  22. Schneeloch, J., Broadbent, C.J., Walborn, S.P., Cavalcanti, E.G., Howell, J.C.: Phys. Rev. A. 87, 062103 (2013)

    Article  ADS  Google Scholar 

  23. Schneeloch, J., Tison, C.C., Fanto, M.L., Ray, S., Alsing, P.M.: Phys. Rev. Research 2, 043152 (2020)

    Article  ADS  CAS  Google Scholar 

  24. Ji, S.W., Lee, J., Park, J.Y., Nha, H.: Phys. Rev. A. 92, 062130 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundations of China (No. 61975184), Science Foundation of Zhejiang Sci-Tech University (No. 19062151-Y).

Author information

Authors and Affiliations

Authors

Contributions

J.W.L. conducted the study and wrote the manuscript; Y.B. designed and directed the study, X.Y.C., Y.R.S., Y.X.J., L.C., G.R.J. and A.X.C. contributed to the discussion and analysed the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to Y. B. Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J.W., Cheng, X.Y., Shen, Y.R. et al. Genuine Multipartite Quantum Steering can be Generated by Enhanced Raman Scattering without Optical Cavity. Int J Theor Phys 63, 22 (2024). https://doi.org/10.1007/s10773-024-05551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05551-9

Keywords

Navigation